Header menu link for other important links
Vibration analysis of functionally graded thermoelastic nonlocal sphere with dual-phase-lag effect
D.K. Sharma, M. Bachher, S. Manna,
Published in Springer
Volume: 231
Issue: 5
Pages: 1765 - 1781
The vibration of a functionally graded axisymmetric nonlocal thermoelastic hollow sphere with dual-phase-lag effect is addressed in this paper. Surfaces of the sphere are assumed to be thermally insulated or isothermal and stress free. According to a simple power law, the material is assumed to be graded in the radial direction. The linear theory of modified thermoelasticity with a dual phase lag based on Eringen’s nonlocal elasticity is employed to model this problem. The Matrix Frobenius method of continued power series is introduced to derive the analytical solutions. The phase velocity relations for the existence of various modes of vibrations in the designed hollow sphere are derived in compact forms. In order to explore the attributes of vibrations, the fixed-point numerical iteration technique is used to solve the secular equations. The numerical computations for the material crust in respect of the natural frequencies, thermoelastic damping and the frequency shifting are presented graphically using MATLAB software tools. © 2020, Springer-Verlag GmbH Austria, part of Springer Nature.
About the journal
JournalData powered by TypesetActa Mechanica
PublisherData powered by TypesetSpringer