Header menu link for other important links
X
Spontaneous magnetization of quantum XY spin model in joint presence of quenched and annealed disorder
A BERA, A SEN, U SEN
Published in American Physical Society
2017
Volume: 95
   
Issue: 22
Abstract
We investigate equilibrium statistical properties of the isotropic quantum XY spin-1/2 model in an external magnetic field when the interaction and field parts are subjected to quenched or annealed disorder or both. The randomness present in the system are termed annealed or quenched depending on the relation between two different time scales - the time scale associated with the equilibration of the randomness and the time of observation. Within a mean-field framework, we study the effects of disorders on spontaneous magnetization, both by perturbative and numerical techniques. Our primary interest is to understand the differences between quenched and annealed cases, and also to investigate the interplay when both of them are present in a system. We find that the magnetization survives in the presence of a unidirectional random field, irrespective of its nature, i.e., whether it is quenched or annealed. However, the field breaks the circular symmetry of the magnetization, and the system magnetizes in specific directions, parallel or transverse to the applied magnetic field. Interestingly, while the transverse magnetization is affected by the annealed disordered field, the parallel one remains unfazed by the same. Moreover, the annealed disorder present in the interaction term does not affect the system's spontaneous magnetization and the corresponding critical temperature, irrespective of the presence or absence of quenched or annealed disorder in the field term. We carry out a comparative study of these and all other different combinations of the disorders in the interaction and field terms, and point out their generic features. © 2017 American Physical Society.
About the journal
JournalData powered by TypesetPhysical Review B
PublisherData powered by TypesetAmerican Physical Society
ISSN2469-9950
Open AccessYes