In this paper, we propose a sparse encoding algorithm consisting of two schemes namely geometry-based method (GBM) and the wavelet transform-based iterative thresholding (WTIT). The sub-algorithm GBM reduces the minimal ECG voltage values to zero level. Subsequently, WTIT encodes the ECG signal in time-frequency domain, obtaining high sparsity levels. Compressed Row Huffman Coding (CRHC) algorithm converts the sparse matrices into compressed, transmittable matrices. The performance of the algorithms is validated in terms of compression ratio (CR), percentage RMS difference (PRD), and time complexity. © Springer Nature Singapore Pte Ltd. 2019.