Header menu link for other important links
Order, Disorder, and Reorder State of Lysozyme: Aggregation Mechanism by Raman Spectroscopy
S. Dolui, A. Mondal, A. Roy, U. Pal, S. Das, , N.C. Maiti
Published in American Chemical Society
PMID: 31820990
Volume: 124
Issue: 1
Pages: 50 - 60
Lysozyme, like many other well-folded globular proteins, under stressful conditions produces nanoscale oligomer assembly and amyloid-like fibrillar aggregates. With engaging Raman microscopy, we made a critical structural analysis of oligomer and other assembly structures of lysozyme obtained from hen egg white and provided a quantitative estimation of a protein secondary structure in different states of its fibrillation. A strong amide I Raman band at 1660 cm-1 and a N-Cα-C stretching band at ∼930 cm-1 clearly indicated the presence of a substantial amount of α-helical folds of the protein in its oligomeric assembly state. In addition, analysis of the amide III region and Raman difference spectra suggested an ample presence of a PPII-like secondary structure in these oligomers without causing major loss of α-helical folds, which is found in the case of monomeric samples. Circular dichroism study also revealed the presence of typical α-helical folds in the oligomeric state. Nonetheless, most of the Raman bands associated with aromatic residues and disulfide (-S-S-) linkages broadened in the oligomeric state and indicated a collapse in the tertiary structure. In the fibrillar state of assembly, the amide I band became much sharper and enriched with the β-sheet secondary structure. Also, the disulfide bond vibration in matured fibrils became much weaker compared to monomer and oligomers and thus confirmed certain loss/cleavage of this bond during fibrillation. The Raman band of tryptophan and tyrosine residues indicated that some of these residues experienced a greater hydrophobic microenvironment in the fibrillar state than the protein in the oligomeric state of the assembly structure. © 2019 American Chemical Society.
About the journal
JournalData powered by TypesetJournal of Physical Chemistry B
PublisherData powered by TypesetAmerican Chemical Society