We examine the analytical structure of the nonlinear Lienard oscillator and show that it is a bi-Hamiltonian system depending upon the choice of the coupling parameters. While one has been recently studied in the context of a quantized momentum-dependent mass system, the other Hamiltonian also reflects a similar feature in the mass function and also depicts an isotonic character. We solve for such a Hamiltonian and give the complete solution in terms of a confluent hypergeometric function. (C) 2015 AIP Publishing LLC.