Header menu link for other important links
Observed variability of the East India Coastal Current on the continental shelf during 2010–2018
, D. Shankar, S.G. Aparna, V. Fernando, A. Kankonkar
Published in Springer
Volume: 129
Issue: 1
We describe the variability of the East India Coastal Current (EICC) during 2010–2018 on the outer continental shelf using data from four ADCP (acoustic Doppler current profilers) moorings deployed off Gopalpur (∼ 19.5∘N), Visakhapatnam (∼ 18∘N), Kakinada (∼ 16∘N), and Cuddalore (∼ 12∘N) on the east coast of India. In general, the shelf EICC mirrors the slope EICC for the annual and semi-annual cycles, but the shelf-slope coherence is weaker and patchy for the 120-day and intraseasonal bands. The seasonal cycle, which consists of the annual, semi-annual, and 120-day bands, dominates the observed variability. The amplitude of the annual cycle varies over the time series. In the intra-annual band, variability tends to switch between the semi-annual and 120-day bands, but the former dominates throughout the time series off Cuddalore, the southernmost location. The EICC appears as a shallow current in all period bands, including the seasonal cycle, off Cuddalore, but even the intraseasonal EICC appears as a deep current at the other three locations. A wavelet analysis shows seasonal variation of the wavelet power in the intraseasonal band, suggesting that the amplitude of intraseasonal variability itself varies with season, but there is no clear seasonal pattern. As on the continental slope, the annual and semi-annual components are coherent along the coast, but alongshore coherence is weak at shorter time scales. Upward phase propagation is evident for the seasonal cycle at all locations, but downward phase propagation, seen on the slope off Cuddalore, is evident on the shelf as well. The 500-day low-pass filtered shelf EICC is not weak and the sub-annual variability is comparable to that on the slope. The long ADCP record allows us to confirm the dominance of seasonality in the EICC regime in a robust fashion; the data show that the EICC tends to flow in its canonical poleward (equatorward) direction during spring (winter). This dominance of seasonality enhances the predictability of the EICC. © 2020, Indian Academy of Sciences.
About the journal
JournalData powered by TypesetJournal of Earth System Science
PublisherData powered by TypesetSpringer