An "end-off" compartmental ligand has been synthesized by an abnormal Mannich reaction, namely, 2-[bis(2-methoxyethyl)aminomethyl]-4-isopropylphenol yielding three centrosymmetric binuclear μ-phenoxozinc(II) complexes having the molecular formula [Zn2(L)2X2] (Zn-1, Zn-2, and Zn-3), where X = Cl-, Br -, and I -, respectively. X-ray crystallographic analysis shows that the ZnO3NX chromophores in each molecule form a slightly distorted trigonal-bipyramidal geometry (τ = 0.55-0.68) with an intermetallic distance of 3.068, 3.101, and 3.083 Å (1-3, respectively). The spectrophotometrical investigation on their phosphatase activity established that all three of them possess significant hydrolytic efficiency. Michaelis-Menten-derived kinetic parameters indicate that the competitiveness of the rate of P-O bond fission employing the phosphomonoester (4-nitrophenyl)phosphate in 97.5% N,N-dimethylformamide is 3 > 1 > 2 and the kcat value lies in the range 9.47-11.62 s-1 at 298 K. Theoretical calculations involving three major active catalyst forms, such as the dimer-cis form (D-Cis), the dimer-trans form (D-Trans), and the monoform (M-1 and M-2), systematically interpret the reaction mechanism wherein the dimer-cis form with the binuclear-bridged hydroxide ion acting as the nucleophile and one water molecule playing a role in stabilizing the leaving group competes as the most favored pathway. © 2015 American Chemical Society.