The signature of various disordered phases is inferred from the measurement of the real part of alternating current conductance Σ(T, f) of a nanocrystalline double perovskite La2NiMnO6. The system exhibits a paramagnetic insulating (PMI) phase at high temperatures, a ferromagnetic insulating (FMI) phase at low temperatures, and a Griffiths-like phase in the intermediate temperature range. In these three phases, Σ(T, f) shows qualitatively similar variation with frequency f. At a fixed temperature T, Σ(T, f) remains constant to its Ohmic value Σ0 up to a certain frequency, known as the onset frequency fc and increases with increasing f beyond fc. Scaled appropriately, Σ(T, f) versus f data corresponding to these three regimes fall on the same master curve indicating the universal nature of the scaling behaviour of alternating current conductance. This onset frequency fc scales with Σ0 as f c ∼ Σ 0 x f with xf as the nonlinearity exponent. This exponent xf shows a gradual crossover from 1.025 ± 0.006 in FMI phase to 0.518 ± 0.07 in PMI phase in an intermediate temperature range signifying the presence of Griffiths-like phase. A simple phenomenological R-RC model consistent with the microstructural conduction mechanisms in PMI and FMI phases is developed to generate the qualitative non-Ohmic character of ac conductance, the onset frequency fc, and the nonlinearity exponent xf. Existing scaling theories with reliable models are used to analyze and compare the results of ac conductance in similar systems. © 2015 AIP Publishing LLC.