Header menu link for other important links
Influence of skin effect on the series resistance of millimeter-wave IMPATT devices
Published in SPRINGER
Volume: 12
Issue: 3
Pages: 511 - 525
An attempt is made in this paper to study the influence of skin depth on the parasitic series resistance of millimeter-wave IMPATT devices based on Silicon. The method is based on the concept of depletion width modulation of the device under large-signal condition. A large-signal simulation model based on non-sinusoidal voltage excitation is used for this study. The electric field snap-shots of 35 GHz Single-Drift Region (SDR) and 94 GHz Double-Drift Region (DDR) IMPATT devices are first obtained from which the series resistances are estimated by incorporating the effect of skin depth in the modeling and simulation. The series resistances of these devices are also obtained by neglecting the effect of skin depth. The values of series resistances obtained from the simulation are compared with the corresponding experimentally reported values. It is observed that the series resistance estimated by including the skin effect is in closer agreement with the experimental values as compared to that without including the same. Thus the skin effect plays an important role for determining the series resistance of IMPATT devices at millimeter-wave frequency bands. © 2013 Springer Science+Business Media New York.
About the journal
JournalData powered by TypesetJournal of Computational Electronics
PublisherData powered by TypesetSPRINGER