Header menu link for other important links
X
Gradient ricci solitons on almost kenmotsu manifolds
DE U CHAND
Published in Mathematical Institute of the Serbian Academy of Sciences and Arts
2015
Volume: 98
   
Issue: 112
Pages: 227 - 235
Abstract
If the metric of an almost Kenmotsu manifold with conformal Reeb foliation is a gradient Ricci soliton, then it is an Einstein metric and the Ricci soliton is expanding. Moreover, let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with ξ belonging to the (k, μ)'-nullity distribution and h ≠ 0. If the metric g of M2n+1 is a gradient Ricci soliton, then M2n+1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, also, the Ricci soliton is expanding with λ = 4n.
About the journal
JournalPublications de l'Institut Mathematique
PublisherMathematical Institute of the Serbian Academy of Sciences and Arts
ISSN0350-1302
Open AccessYes