This problem deals with the thermo-visco-elastic interaction due to step input of temperature on the stress free boundaries of a homogeneous visco-elastic isotropic spherical shell in the context of generalized theories of thermo-elasticity. Using the Laplace transformation the fundamental equations have been expressed in the form of vector-matrix differential equation which is then solved by eigen value approach. The inverse of the transformed solution is carried out by applying a method of Bellman et al. [R. Bellman, R.E. Kolaba, J.A. Lockette, Numerical Inversion of the Laplace Transform, American Elsevier Publishing Company, New York, 1966]. The stresses are computed numerically and presented graphically in a number of figures for copper material. A comparison of the results for different theories (TEWED (GN-III), three-phase-lag method) is presented. When the body is elastic and the outer radius of the shell tends to infinity, the corresponding results agree with the result of existing literature. © 2008 Elsevier Inc. All rights reserved.