Header menu link for other important links
Effect of modified double-sided grating structures on efficiency enhancement of thin-film silicon solar cells
A. Panda, S. Maiti, , R. Chakraborty
Published in OSA - The Optical Society
PMID: 33104673
Volume: 59
Issue: 30
Pages: 9532 - 9539
Enhancement of optical to electrical conversion is vital for improving the efficiency of any solar cell. In recent years, use of thin films instead of bulk wafers has resulted in a huge reduction of production cost, and as such, efficiency enhancement of thin-film solar cells is considered in this study. Though this enhancement depends on several factors, most significant among them is the increase in light absorption within the active material of the solar cell. In this work, various types of grating structures on both sides of active solar cell material for light trapping are studied in detail, and a new type of arrangement of optimized grating structure that significantly improves the light absorption is selected. Enhancement of light absorption for change in dielectric material of the grating structure without changing the active material is also observed. Along with structural optimization, simulated electrical characterization of the samples was also performed, which yields a short-circuit current density of 29.27 mA/cm2 with conversion efficiency of 14.51%, having a fill factor of 0.83 for a typical ultrathin layer of active material of thickness 2 µm. This is quite significant because typical cells of this category have much lesser conversion efficiency. © 2020 Optical Society of America
About the journal
JournalData powered by TypesetApplied Optics
PublisherData powered by TypesetOSA - The Optical Society
Impact Factor1.230
Citation Styleunsrt
Sherpa RoMEO Archiving PolicyGreen