Header menu link for other important links
X
Dinuclear copper(II) complexes: Solvent dependent catecholase activity
K S BANU, M MUKHERJEE, A GUHA, S BHATTACHARYA, E ZANGRANDO, D DAS
Published in PERGAMON-ELSEVIER SCIENCE LTD
2012
Volume: 45
   
Issue: 1
Pages: 245 - 254
Abstract
Four new dicopper(II) complexes of phenol based compartmental ligands, namely [Cu 2(L 1H) 2(H 2O) 2(NO 3) 2](NO 3) 2 (1), [Cu 2(L 2)(OH)(H 2O)(NO 3)](NO 3) (2), [Cu 2(L 3) 2(H 2O)(NO 3)](NO 3) (3) and [Cu 2(L 4)(H 2O) 2(NO 3)](NO 3) 2 (4) [where L 1 = 2-formyl-4-methyl-6-(4-(aminomethyl)- piperidine)iminomethyl-phenolato, L 2 = 2,6-bis(2-amino-2-methyl-1- propanol)iminomethyl-4-methyl-phenolato, L 3 = 2-formyl-4-methyl-6- (benzylamine)iminomethyl-phenolato and L 4 = 2,6-bis(2- aminoethylpyridine)iminomethyl-4-methyl-phenolato] have been synthesized and structurally characterized. The single crystal X-ray analyses reveal that all four complexes are dinuclear in nature; complexes 2 and 4 comprise of one respective ligand, whereas 1 and 3 are contain two respective ligands, and the Cu-Cu separation in each case is ca. 3.0 Å. All four complexes are soluble in dichloromethane (DCM), methanol, acetonitrile (ACN), dimethylsulfoxide (DMSO), water-methanol (50:50, v/v), and this property has been exploited to access the solvent effect on the catecholase activity of the complexes towards the aerobic oxidation of 3,5-DTBC to 3,5-DTBQ. A UV-Vis spectral study in the different solvents, followed by a kinetic investigation, suggests that the change in spectral behavior follows a similar trend, being dependent on the coordinating ability of the solvent, irrespective of the complex used. The commonly known physical parameters of the solvents, like the dielectric constant, dipole moment, polarity, etc., do not seem to be a key factor in controlling the catecholase activity. However, protic solvents are observed to be a better choice than aprotic solvents for the oxidation of 3,5-DTBC. © 2012 Elsevier Ltd. All rights reserved.
About the journal
JournalData powered by TypesetPolyhedron
PublisherData powered by TypesetPERGAMON-ELSEVIER SCIENCE LTD
ISSN0277-5387