Header menu link for other important links
Cover independent image steganography in spatial domain using higher order pixel bits
G. Maji, S. Mandal,
Published in Springer
In spatial domain image steganography, Least Significant Bits (LSB) of cover image pixels are used to embed a secret message due to minimal distortion and higher payload capacity. In this paper, we have introduced an exclusive-OR (XOR) based encoding of encrypted secret message bits using varying higher-order pixel intensity bits. Encoding and LSB embedding is done block-wise by dividing the cover image into a number of blocks. The secret message is first encrypted using symmetric key cryptography and then encoded those encrypted bits by XORing them with randomly selected higher-order pixel bis of the cover image to obscure the secret bits further. Next, an inversion technique is applied to the encoded bits block-wise to keep the LSB bit changes to a minimum. The stego-key consists of the symmetric encryption key and the encode-key containing parameter settings such as the number_of_blocks, starting_block, start_pixel_offset, block_selection_rule, etc. This stego-key is shared prior to the actual communication using public-key cryptography to ensure the key’s authenticity and integrity. The extraction process does not require the cover image; the stego-image and the stego-key are sufficient. Experimental results show the visual imperceptibility along with improved image quality metrics such as Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Normalized Cross-Correlation (NCC), and Structural Similarity (SSIM) index in comparison to other well-known techniques. The average PSNR value remains above 51dB, even with 90% of the capacity utilized. The proposed scheme successfully eludes many standard steganalysis attacks such as histogram-based analysis (PDH), chi-square based embed probability test, Regular and Singular groups (RS) analysis, sample pair test, etc. on the tested stego-images. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
About the journal
JournalData powered by TypesetMultimedia Tools and Applications
PublisherData powered by TypesetSpringer