The structural, morphological, optical and magnetic properties of Ar+9 implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol-gel derived films were implanted with fluences 0 (un-implanted), 5×1014 (low), 1015 (intermediate) and 1016 (high) ions/cm2. Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV-visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 1016 ions/cm2 with saturation magnetization (MS) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn2+ ions and VZn related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. © 2016 Elsevier B.V. All rights reserved.