Header menu link for other important links
X
Comparative Photophysical Study of Differently Substituted Cinnamaldehyde-Based Chalcones: From Intramolecular Charge Transfer to Fluorogenic Solvent Selectivity
A BHATTACHARYYA, S C MAKHAL,
Published in American Chemical Society
2019
PMID: 31287690
Volume: 123
   
Issue: 30
Pages: 6411 - 6419
Abstract
We synthesized three cinnamaldehyde-based chalcone derivatives, (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (HPD), (2E,4E)-5-(4-(dimethylamino)phenyl)-1-phenylpenta-2,4-dien-1-one (DPPD), and (2E,4E)-5-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DPHPD). The molecule HPD was totally nonfluorescent. Exclusion of a phenolic -OH moiety from HPD along with the introduction of a dimethylamino moiety in DPPD resulted in excellent excited-state charge-transfer properties in the solution phase. Interestingly, introduction of phenolic -OH and dimethylamino moieties in DPHPD resulted in solvent selectivity in the excited state. DPHDP behaved as a strong fluorophore only in carbonyl- or thiocarbonyl-containing solvents, such as dimethylsulfoxide (DMSO), dimethylformamide (DMF) and dimethylacetamide (DMAC) and showed a prominent red color under UV light. However, no emission was observed in similar carbonylated solvents, such as acetone or formamide, or in viscous medium, such as glycerol. The difference in solvent response was probed by various spectroscopic techniques and analyzed using the crystal structure of the three chalcones along with theoretical calculations. The practical utility of DPHPD was explored by detecting the percentage of water in DMSO solvent. Copyright © 2019 American Chemical Society.
About the journal
JournalData powered by TypesetJournal of Physical Chemistry A
PublisherData powered by TypesetAmerican Chemical Society
ISSN1089-5639
Open AccessNo