The present study concentrates on a situation where a Renner-Teller (RT) system is entangled with Jahn-Teller (JT) conical intersections. Studies of this type were performed in the past for contours that surround the RT seam located along the collinear axis see, for instance, G. J. Halász, Á. Vibók, R. Baer, and M. Baer, J. Chem. Phys. 125, 094102 (2006). The present study is characterized by planar contours that intersect the collinear axis, thus, forming a unique type of RT-non-adiabatic coupling terms (NACT) expressed in terms of Dirac-δ functions. Consequently, to calculate the required adiabatic-to-diabatic (mixing) angles, a new approach is developed. During this study we revealed the existence of a novel molecular parameter, η, which yields the coupling between the RT and the JT NACTs. This parameter was found to be a pure number η = 22/π (and therefore independent of any particular molecular system) and is designated as Renner-Jahn coupling parameter. The present study also reveals an unexpected result of the following kind: It is well known that each (complete) group of states, responsible for either the JT-effect or the RT-effect, forms a Hilbert space of its own. However, the entanglement between these two effects forms a third effect, namely, the RT/JT effect and the states that take part in it form a different Hilbert space. © 2013 American Institute of Physics.