Elastic and inelastic angular distribution and excitation functions were measured for the 28Si + 28Si system in the vicinity of the Coulomb barrier. While the elastic data could be described very well by using fully microscopic complex potential, the inelastic cross sections were found to be more sensitive to small variations in the potential. In particular the Coulomb nuclear interference dip observed in the inelastic excitation functions could not be fitted satisfactorily with calculation. Inclusion of an energy dependent term of Gaussian shape to the associated matrix element with the reorientation coupling in the phenomenological calculations leads to a better fit the inelastic excitation functions. © 1998 Elsevier Science B.V.