Moving object detection techniques have been studied extensively for such purposes as video content analysis as well as for remote surveillance. Video surveillance systems rely on the ability to detect moving objects in the video stream which is a relevant information extraction step in a wide range of computer vision applications. There are many ways to track the moving object. Most of them use the frame differences to analyze the moving object and obtain object boundary. This may be quite resource hungry in the sense that such approaches require a large space and a lot of time for processing. This paper proposes a new method for moving object detection from video sequences by performing frame-boundary tracking and active-window processing leading to improved performance with respect to computation time and amount of memory requirements. A stationary camera with static background is assumed. © 2011 Springer-Verlag Berlin Heidelberg.