Disbursement of loan is an important decision-making process for the corporate like banks and NBFC (Non-banking Finance Corporation) those offers loans. The business involves several parameters and the data which are associated to these parameters are generated from heterogeneous data sources and also belong to different business verticals. Henceforth the decision-making on loan scenarios are critical and the outcome involve solving the issues like whether to grant the loan or not, if sanctioned what is highest amount, etc. In this paper we consider the traditional parameters of loan sanction process along with these we identify one special case of Indian credit lending scenario where the people having old loans with good repayment history get priority. This limits the business opportunities for Bank/NBFC or other loan disbursement organizations as potential good customers having no loan history are treated with less priority. In this research work we propose a data warehouse model which integrates the existing parameters of loan disbursement related decisions and also incorporates the newly identified concepts to give the priorities to the customers who don’t have any old credit history. © Springer Nature Singapore Pte Ltd. 2019.