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ON THE POINTWISE CONVERGENCE
OF THE EIGENFUNCTION EXPANSION ASSOCIATED

WITH SOME ITERATED BOUNDARY VALUE PROBLEMS

JYOTI DAS AND PRABIR KUMAR SENGUPTA

ABSTRACT. Given a boundary value problem consisting of a second-order dif-

ferential equation and some boundary conditions, one can derive higher-order

boundary value problems, called iterated boundary value problems, provided

the coefficients in the second-order differential equation are sufficiently smooth.

The problem of convergence of the eigenfunction expansions associated with

boundary value problems of even order has been the central attraction for

mathematicians since the beginning of this century. The idea of this paper is

to single out some higher-order boundary value problems, for which the ques-

tion of convergence of the said expansion is completely answered by the similar

problem associated with the second-order boundary value problem responsible

for the generation of the iterated boundary value problem.

1. Introduction. The problem of the convergence, pointwise or in respect to

some norm, of the eigenfunction expansion associated with some boundary value

problems has attracted the attention of many mathematicians since the beginning

of this century. In 1910, Hermann Weyl [14] first proved that every second-order

differential equation

(1.1) L[y] = -(py^){1)+qy = Xy,        0 < x < oo

(where X = ft + iv, v ^ 0, p,q are real-valued functions on [0, oo), p > 0, y^ =

dr/dxr, r = 1,2), has at least one solution belonging to the class £2 = £2[0, oo)

of all Lebesgue square-integrable functions on [0, oo). This initiated the study of

the convergence problem in the £2-space setting and it has been proved that the

eigenfunction expansion of any / G £2 [0, oo) associated with the boundary value

problem

ÍL\y) — -^y,      x = ft + iv, o < x < oo,
y(0)cosa + y(1)(0)sina = 0        (0 < a < tt),

2/G£2[0,oo),

converges to / in the normed linear space £2[0, oo). The problem becomes intricate

when one considers the pointwise convergence of the said expansion. Titchmarsh

[13] has developed a theory to prove the convergence of the eigenfunction expansion

corresponding to a given function / G £2 at each point x G [0, oo), whenever the

Fourier series of / converges to / at that point, under suitable restrictions on p and

q or on /.

Received by the editors June 2, 1983 and, in revised form, March 5, 1985.

1980 Mathematics Subject Classification.  Primary 34B25.
Key words and phrases. Bilinear concomitant, boundary condition function, boundary value

problem, convergence under Fourier conditions, Hubert space, Lebesgue square-integrable solu-

tion, limit-point case at infinity, limit-n case at infinity, resolvent operator, simple closed contour.

©1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

593

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



594 JYOTI DAS AND P. K. SENGUPTA

For suitable p,q, formal powers Ln{-\, where the integer n > 1, of L[-\ may be

obtained according to the process of iteration

Ln[y\ = L[Ln-1[y}\        (n > 1),

with the convention L°[y]  = y.   Then a (2n)th order iterated boundary value

problem In may be defined as follows (n > 2):

n ] ÍL"[y] = A"y,
[n) \B(y) = B1(y) = --- = Bn-1(y)=0,

where Br(y) = B(Lr[y\) and B(y) = y(0)cosa + y(1)(0)sina (0 < a < it).

It is natural that anyone will be interested in the investigation of the problem of

convergence of the eigenfunction expansion associated with the iterated boundary

value problem (I„). The idea of this paper is to reveal that the pointwise con-

vergence of the eigenfunction expansion of any / G £2[0, oo) associated with the

iterated boundary value problem (In) can very easily be derived from the corre-

sponding problem associated with (I) under those restrictions on p, q which are

sufficient for the formation of Ln[y] (n > 1), and are such that only n linearly

independent solutions of Ln[y] = Xny (A = p + iv, v ■£ 0) belong to £2[0, oo) (in

short, we say that Ln[-] is in the limit-n condition at infinity). The result thus

obtained is stated in the following theorem.

Theorem. Let
(a) L[-\ be in the limit-point condition at infinity (i.e. L[y] = Ay, im A ^ 0, has

only one linearly independent solution belonging to £2[0, oo));

(b) the coefficients p, q are real-valued functions on [0, oo) and for some integer

n with n > 2,

(i) let p(2n-2) be absolutely continuous on [0, X] for all X > 0 and let p(x) > 0

for all x G [0, oo),

(ii) let g(2n~3) be absolutely continuous on [0,X] for allX > 0 (see Everitt-Giertz

[6] for these conditions on p,q),

(c)Ln[-] (n > 2) be in the limit-n condition at infinity.

Then the eigenfunction expansion of an arbitrary function f G £2[0, oo) associ-

ated with the boundary value problem (I„) (n > 2) converges to f(x) at any point

x G [0, oo), provided the eigenfunction expansion of f corresponding to the boundary

value problem (I) at that point x converges to f(x).

Some useful results regarding the boundary value problem (I) are given in §2. In

§3 we present the proof of this theorem for the case n — 2. §4 gives a sketch of the

proof of the theorem for the case n > 2, details being omitted for want of space.

To clarify the result, an example is dealt with in §5.

2. Some useful results. For the boundary value problem (I) given by

( L[y] = -(pi/(1))(1) +qy = Xy,        X = ft + iv, 0 < x < oo,

(I) < B(y) =y(0)cosa+ y(1)(0)sine* = 0        (0 < a < tt),

[yGL2[0,œ),

let 0(-,A) denote the boundary condition function as defined by Kodaira [7].  As

the bilinear concomitant associated with the differential expression L[-] is

(2.1) [uv]2 = p(x)[u(x)i;(1)(x) - uw(x)v(x)},
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it is easy to verify that the boundary condition function <j> is required to satisfy the

following (0 < a < 7r):

(2.2) p(O)0(O, A) = -sin a,        p(0)tf>(1)(0, A) = cosa.

Let 9 = 6(x, X) be that solution of L[y] = Xy which satisfies the initial conditions

(2.3) 0(0, A) = - cos a,        0(1) (0, A) = - sin a.

It can be easily verified that

(2.4) [<p9\2 = 1.

H. Weyl [14] has proved that there exists an analytic function m(X), such that, if

im A ̂  0, then

(2.5) rp(x, X) = 6(x, X) + m(A)</>(x, A) G t2.

For any / G £2, Titchmarsh [13] defined the function $ = $(-,A) = $(-,A;/)

known as the resolvent operator associated with the BVP (I) as follows:

<Kx,A)=$(x,A;/)

= Vf(x, A) /  <p(t, X)f(t) dt + 4>(x, X) f   ip{t, X)f(t) dt.

In Chapter III of [13], Titchmarsh proved that the eigenfunction expansion of any

given function / G C2 at a given point x will converge to f(x) if and only if

(2.7) /(x) =  lim    lim  \- f        $(x,A)dAl.
H-co¿^0+|7r/_ñ+¿¿¡ J

Many sets of conditions on p and q or on / or on all of them have been stipulated

to ensure the validity of (2.7) (see [8]-[12]).

Our aim here is to show that the convergence problem with respect to any

iterated boundary value problem (In) can be related to the convergence problem

with respect to (I).

3. The case n = 2. The BVP (I2) is exhibited below:

L2[y] = X2y,        X = p + iv, 0 < x < oo,

B(y) = B(L[y\) = 0,

where B(y) = y(0)cosa + y'1'(0)sina, (0 < a < it).

The bilinear concomitant \uv\n associated with the differential equation of (I2)

is as follows:

(3.1) H4 = p2(x){u(3)(x)i>(x) - u{-2\x)v^\x) -+ u^(x)vM(x) - u(x)v^(x)}

+ 2p(x)p(1)(x){u(2)(x)ü(x) - u(x)vW(x)}

+ {2p(x)q(x) - p(x)p(2)(x)}{u(x)vW(x) - uW(x)v{x)}.

The boundary condition functions (¡>r(-,X2) (r = 1,2) [4,5] are then required to

satisfy

'</'i(0,A) = </)(11)(0,A2) = 0,

(3.2) < p2(O)0(12)(O,A2) = sina,

p3(0)^3)(0,A2) = -[p^cosa + p^HOjsina];
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and

p(0)<A2(0,A2) = -sin a,        p(0)<41}(0, A2) = cosa,

(3.3)
p2(0)42)(0,A2) = -[9(0)sina + p(1)(0)co8o],

p3(0)43)(0,A2) = {2p(1)(0)g(0) -p(0)qW(0)}Bina

+ {2\pW (0)]2 + p(0)q(0) - p(0)p(2) (0)} cos a.

If 1 and u denote the two distinct roots of unity, it can be easily verified that each

of <p(-, X),<p(-, Xu),6(-, X) and 9(-,Xu) satisfies the differential equation L2[y] = X2y

of (I2), and they are linearly independent if A ^ 0. This allows us to express the

boundary condition functions (¡>r(-,X2) (r = 1,2) in terms of these four functions.

In fact, we have,

(3.4) Mx, A2) = ¿[0(x, A) - <t>(x, Au)],

(3.5) 4>2(x,X2) =l-[<p(x,X) + <t>(x,Xu)}.

If we choose the functions 6r(-, A2) (r = 1,2) as

(3.6) 01(x,X2)=l-[6(x,X) + 6(x,Xu)\,

(3.7) 02(x,A2) = ^[0(x,A)-0(x,AU)],

it can be easily verified that (<$rs denoting Kronecker's delta)

(3.8) [4>rOs\i = Srs    (r,s = 1,2),        [M2U = 0,    [¿ife] = 0.

According to Everitt [5, §18], there exist analytic functions mrs(-) (r,s = 1,2) so

that, for im A t¿ 0,

2

(3.9) ipT{x, A2) = 6r(x, A2) + J2mrs4>s(x, A2) G L2.
s=l

On the other hand ip(-, X) and ip(-, Xu) are two linearly independent (for im A ̂  0)

square-integrable solutions of L2[y] = X2y. Since, according to hypothesis (c), L2\-\

is in the limit-2 condition, the two square-integrable solutions i/>r(-,A2) (r = 1,2)

of L2[y] = X2y must be a linear combination of the solutions ib(-, X) and tp(-,Xu),

say

(3.10) xpr(x,X2) = Ari¡j(x,X) + BrÍj(x,Xu)       (r = l,2).

It has been proved in [4] that there is a relation between the two bilinear forms

given in (2.1) and (3.1) which may be exhibited as follows:

(3.11) [uv]4 = [L{u]v}2 + [uL[v}}2.

From (3.8) we deduce that [<^rV,«]4 = &rs (r,s = 1,2). Using this result and the

expressions for <pi,<t>2 given in (3.4) and (3.5) we can easily derive from (3.10) that

(3.12) ^(x, A2) = i [rp(x, X) + i/>(x, Au)],

(3.13) i/>2(x, A2) = ±-[tp(x, X) - 4>(x, Xu)}.
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Chaudhuri and Everitt [3] have proved that the resolvent operator $2 = $2(z, A2) =

$2(x, A2; /) associated with the BVP (I2) is given by

(3.14)
<&2(x,A2) = $2(x,A2;/)

= ¿ Lr(x, A2) jX chr(t, X2)f(t) dt + <pr(x, A2) j°° i/v(i, A2)/(i) dt\ .

It is now a matter of simple substitution of the expressions for <f>r and tpr as given

in (3.4), (3.5), (3.12) and (3.13), in the expression (3.14) of $2(x,A2) to deduce

that

(3.15) $2(x, A2; /) = ¿ [#(*, A; /) + u*(x, A«; /)].

This is the key result of our exposition. Let Ti be a simple closed curve in the

A-plane, symmetric about the real A-axis. Let the image of the upper half of Ti

into the A2-plane be T2, which is clearly a simple closed curve. Further, as one

moves round the closed contour Ti once, one has to move round T2 twice. Hence

(3.16) 2J   $2(x,A2;/)d(A2) = |   ¿[$(x, A; /) + u$(x, Xu;f)}d(X2)

= f  $(x, A;/) dA + /   $(x,Au;/)d(Au).
Jt! JTi

One now requires only routine arguments to establish that if the eigenfunction

expansion associated with the BVP (I) converges, then so does the eigenfunction

expansion associated with the boundary value problem (I2) [1,2].

4. The case n > 2. In the case of the (2n)th order boundary value problem (In),

we adopt a different approach. The hypothesis (c) that Ln[-] is in the limit-n case

at infinity, enables one to express the n square-integrable solutions \r(x,Xn) (r —

1,2,..., n) of Ln[y] = Xny in terms of the n functions ip(x, Xvr) (r = 0,1,2,...,

n — 1), where 1, v,v2,..., vn~x are the n distinct nth roots of unity, as

n-l

Xr(x, Xn) = £ ArM** Xv°)        (r = 1,2,..., n);

3 = 0

but it becomes a tiresome job to determine the coefficients Ars. Instead we prove

that the function $n (= $„(x, An) = $„(x, An; /J) defined by

(4.1)    $n(x,A") = $n(x,A";/)

= ^ïl*(x,X;f) + v*(x,Xv;f) + ----rvn-1*(x,Xvn-1,f)}

satisfies all the requisite conditions in order to be the resolvent operator of the BVP

(In), viz.

(a) Ln[$n] = An$n + / for all f G L2, and

(b)ß(Lfc[$n])=0(fc = 0,l,2,...,n-l).
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For the proof of this we first note that

(4.2)

L[*n(x, A"; /)] = jJLj [{A*(x, A; /) + /} + v{Xv*(x, Xv, f) + /}

+ ... + r»-i{At>w-1»(z> Av""1, /) + /}]

= ;¿a t*(«.A' /) + v2*& A^, /) + ■•■ + ^""^(x, A«—1,/)]

since 1 + v + v2 + ■ ■ ■ + vn~l = 0, v being an nth root of unity. Further, for any

positive integer k,

(1 - Vk)(l + Vk+V2k + ---+ ¥*<*-!)) = 1 - v»* = 0

and so it follows that 1 + Dfc + u2fc H-h vfcv»-l) = 0 if ufc ̂  1. Using this we can

prove from (4.2) by iteration that, for k = 1,2,..., n - 1,

(4.3)        Lfe[<Mx,A",/)] = nAnÍfe_1 [$(x, A, /) + t>fc+1$(x, At;, /)

+ ... + i/^1»""1'^, Au""1, /)].

Hence

Ln-l\*n(x, A", /)] = ±[${x, A; /) + $(x, At», /) + ••• + *(x, A«»"1,/)],

noting that vn = 1. Operating with L once again we get

LB[*„(x, An, /)] = -[{A*(x, A, /) + /} + {At;*(x, Xv, f) + /}
n

+ --- + {Ai/l-1$(x,Afn-1, /) + /}]

= -[*(x, A; /) + trftfo Av, /) + ••• + ^-^(x, Aw""1, /)] + /
n

= --nAn-1$n(x,A",/) + /    (from (4.1))
n

= A"$„(x,A",/) + /.

This proves (a).

Noting that B operates linearly, we get

B(Lk[*n}) = -Sji5=r[JB(#(xl A, /)) + vk+1B($(x, Xv, /))

+ ... + /+i)("-Dß($(i, Ai;"-1, /))]

= 0,

since B($(x,A, /)) = 0 for all A as the initial values of $(•, A) are independent of

A. This completes the proof of (b). The rest of the proof of the theorem can now

be completed as in the previous section.

5. An example: p = 1, q = 0, a = 0. In this case, the BVP (I) becomes

m / Lo[y] = -y(2) = Ay       (A = p + iv),

U \B(y) = y(0) = 0.
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If A = s2, 0 < arg A < it, im s > 0, the two solutions of — y^ = Ay are eiax and

e'iax, of which eiax G Í2 but e~iax & L2. For suitable / G Í2, the corresponding

eigenfunction expansion assumes the form:

(Ai)

a/" \{eiax - e-xax)d  J™ U(e*ay + e-*ay) + ^(eiay-e-iay)\f(y)dy   ,

and that corresponding to the BVP (I'), obtained by replacing Lç,[y] = Xy by

Lo[y] = -Ay is

dy

6s     3is2     s3
xdl /     <!— + -»-=-

»3 j^ y

(â2) îa L y - e~sx)d tr {y+e~ay) - v2{esy - e~sy)}f{y)

Now, the squared BVP (II) of (I) or (F) consists of

( L2[y}=y^ =A2y,

(II) { B(y) = y(0) = 0,

U(L[y])=y(2)(0)=0.

After some tedious calculations one can prove that the expansion of suitable f G C2

associated with the BVP (II) becomes (see [1, Chapter III, p. 49]

(B)      ^ Í    s-z[eax - e~ax + ieiax - ie~i3X\

i/o Uf + ï
/-6¿     6s     3is2     s3\     iav]  ., , , '

— 1    C°°
+ T^ /      s-2[eax - e~ax - ieiax + ie~iax)

4t J_oo

x d \j°° h(eiay + e~™y) - \(e™y - e-"») J f(y) dy

It is therefore clear that the convergence of (Ai) implies that of (A2) and hence the

convergence of (B) follows.

The mere appearance of (B) gives one the idea of how complicated the expansion

of an arbitrary function in Z2 corresponding to a fourth-order BVP is, not to speak

of the task of proving its convergence. The present paper singles out a class of

higher even order BVPs for which the convergence of the corresponding expansion

can be deduced from sole knowledge of the corresponding second-order BVP.
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