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Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-

ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid

model has been taken to describe the model. Two different modes of the magnetosonic wave have

been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de

Vries Burgers’ equation. It has been shown that the ion-ion collision is the source of dissipation that

causes the Burgers’ term which is responsible for the shock structures in equal mass pair-ion plasma.

The numerical investigations reveal that the magnetosonic wave exhibits both oscillatory and mono-

tonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited

the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave

for weak magnetic field (strong dissipation). The results have been discussed in the context of the

fullerene pair-ion plasma experiments. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4954403]

I. INTRODUCTION

Study of various nonlinear phenomena in pair plasma

composed of positive and negative charge particle of equal

masses has been exclusively studied theoretically1–6 as well

as experimentally.7–10 In normal electron-ion plasma, space

time asymmetry occurs due to the huge mass difference of

electron and ion. This space-time asymmetry can be used to

study the linear and nonlinear wave phenomena in short and

long wave length limit. On contrary, such asymmetry in

space-time collapse in pair plasma. Equality in mass makes

the pair plasma space-time symmetric. This symmetry allows

us to analyse new collective phenomena (linear and nonlin-

ear) in pair plasma. Pair plasma composed of electron and

positron is found to exist in astrophysical environment (pul-

sar magnetospheres, early universe, active galaxy, etc)11–14

and also in inertial confinement fusion reactor using ultrain-

tense lasers.15 On the other hand, pair-ion plasma composed

of positive and negative ions of equal masses have been

developed by Oohara and Hatakeyama16–19 by using positive

and negative fullerene ions ðC660Þ in laboratory. Pair-ion

plasma is used to study in nanotechnology as well as for the

synthesis of dimers directly from carbon allotropes.20

Study of shock phenomena in plasma physics commu-

nity has attracted growing attention in recent years. It is a

well established idea that the shock is generated due to inter-

play between nonlinearity and the combined effects of dissi-

pation and dispersion. Various authors21–23 have studied the

nonlinear shock wave phenomena in pair plasma taking the

viscosity as a source of dissipation. Some authors have

studied the landau damping, instability, and structures like

soliton, shock, and wave modulation in pair-ion plasma, as

well as electron-positron-ion plasmas.24–29 Most of these

investigations have been carried out in collision less limit.

However, a collisional product C121 is produced when nega-

tive C�
60 ions collide with positive Cþ

60 ions and/or neutral

fullerene in fullerene pair-ion plasma.30,31 Thus, collisions

play an important role in nonlinear collective processes of

such pair-ion plasma. Though some of these investigations

have been carried out in collisional limit, none of them have

considered the magnetic field effect.

The aim of the present investigation is to study the non-

linear propagation of magnetosonic shock wave in a colli-

sional pair-ion plasma composed of positive and negative

fullerene ions. Taking the two fluid model for both ions (posi-

tive and negative), we have employed the well-known reduc-

tive perturbation technique (RPT) in finite amplitude wave

theory. Two different modes (fast and slow) of magnetosonic

wave have been observed. The propagation of magnetosonic

shock wave is governed by the Korteweg-de Vries Burger

(KdVB) in collisional pair-ion plasma. Due to the ion-ion

collision, the dissipation occurs. In case of collisional un-

magnetized pair-ion plasma, the nonlinear propagation of ion

acoustic waves (IAW) has been governed by the Korteweg-

de Vries (KdV) equation with a linear damping term.26 In

this case, the linear damping term appeared due to the ion-

neutral collision. As the dissipation of the wave is weak, the

nonlinear wave retained its solitonic shape with diminishing

amplitude and width. On the other hand, collision between

same species (viscosity) produced the strong dissipation and

as a result both oscillatory and monotonic shock wave struc-

tures were shown to be formed.22 Moreover, direct collision

between positive (negative) and negative (positive) ions in

the presence of plasma current (collective phenomena) can
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produce enormous dissipation that causes the ion acoustic

shock wave in both oscillatory and monotonic form,32

although they have investigated such results in the un-

magnetized pair-ion plasma. In our case, we have studied the

magnetosonic shock wave in one spatial dimension under the

assumption that the external magnetic field has lied in x � z

plane making an angle h with x-axis. Therefore, the propaga-

tion vector lied in perpendicular to z-axis, i.e., in x � y plane.

Here, the magnetic field plays an important role. For strong

magnetic field, dispersion dominates over dissipation and

yields an oscillatory shock structure in both modes, fast and

slow. In case of weak magnetic field, dissipation dominates

over dispersion and as a result monotonic shock wave struc-

tures are formed in both modes.

This paper is organized as follows: In Section II, the

physical assumption and basic model is described. In Section

III, the propagation characteristic of nonlinear magnetosonic

wave has been discussed by deriving the KdVB equation

using RPT. The numerical solutions of the KdVB equation

are presented in Section IV. Finally, we have concluded our

results in Section V.

II. PHYSICAL ASSUMPTION AND BASIC EQUATIONS

We have considered a homogeneous, magnetized, and

fully collisional pair-ion plasma composed of positive and

negative fullerene ions (Cþ
60 and C�

60) (without electron). We

have taken the quasi-neutral plasma, so in equilibrium, nþ0 ¼
n�0 ¼ n0 for singly charged ions, where n60 is the equilib-

rium number density of positive (negative) ions. The external

magnetic field lies in the x � z plane making an angle h with

x axis. So the propagation vector lies in the perpendicular z

axis, i.e., in the x � y plane. Dissipation in the dynamical sys-

tem has been taken through the collision between positive

(negative) and negative (positive) fullerene ions. As per the

experimental observation,16–19 we have taken the mass of

both ions as equal, mþ ¼ m� ¼ mðsayÞ [where m6 is the pos-

itive (negative) ion mass], as they are generated from the

same source (fullerene ion source), whereas the temperatures

are slightly different [range ð0:3� 0:5ÞeV], i.e., Tþ 6¼ T�
[where T6 is the positive (negative) ion temperature]. We

define a new temperature variable T ¼ ðTþ þ T�Þ=2.
The basic equations are momentum and continuity equa-

tions for positive ðþÞ and negative ð�Þ ion fluids in a colli-

sional regime together with Maxwell’s electromagnetic

equations which can be expressed as

@n6
@t

þr � n6u6ð Þ ¼ 0; (1)

mn6
@

@t
þ u6 � r

� �

u6 ¼ 6en6 Eþ 1

c
u6 � B

� �

�T6rn66mn6�6 u� � uþð Þ;
(2)

r� B ¼ 4pe

c
nþuþ � n�u�ð Þ; (3)

@B

@t
¼ �cr� E; (4)

r � B ¼ 0; (5)

where e is the magnitude of the electronic charge, B is the

magnetic field, E is the electric field, u6 is the velocities,

n6 is the densities, p6 is the pressure of positive (negative)

ions, and �6 is the positive(negative) ion - negative (posi-

tive) ion collision frequency. The equation of state is

isotropic for both ions, i.e., p6 ¼ T6n6: For the long wave-

length limit, i.e., kqs � 1 (where k is the wave number

and qs is the Larmor radius of ions), from the Poisson

equation

r � E ¼ 4peðnþ � n�Þ; (6)

the spatial variation of electric field may be ignored through-

out the plasma, so that we can assume quasi neutrality condi-

tion, i.e., nþ � n� ¼ n:
For the sake of simplicity of the basic equations (1)–(5), it

is convenient to express all the variables in normalized form.

For this purpose, we introduce the following normalization:

t̂ ¼ xct; r̂ ¼ qsr, n̂ ¼ n=n0; û6 ¼ u6=Cs, B̂ ¼ B=B0,

where B0 is the magnitude of the magnetic field, the cyclotron

frequency xc ¼ eB0=mc, and the acoustic speed Cs

¼ ðT=mÞ1=2. This defines the Larmor radius qs ¼ Cs=xc.

From the basic equations (1)–(5), eliminating E and u�, we
have obtained the following normalized basic equations:

@n̂

@ t̂
þ r̂ � n̂ûð Þ ¼ 0; (7)

Cs

VA

� �2
dû

dt̂
� d

dt̂

1

n̂
r̂ � B̂

� �

¼ 1

n̂
r̂ � B̂ð Þ � B̂

þ 1

n̂
r̂ � B̂ð Þ � r̂

� û � 2
VA

Cs

� �2
1

n̂
r̂ � B̂

 !

� Cs

VA

� �2
1

n̂
r̂n̂; (8)

@B̂

@ t̂
¼ r̂ � û � B̂ð Þ � r̂ � dû

dt̂

�2
VA

Cs

� �2 �þ
xc

� �

r̂ � 1

n̂
r̂ � B̂

� �

; (9)

r̂ � B̂ ¼ 0;
d

dt̂
� @

@ t̂
þ û � r̂; (10)

where the positive ion velocity ûþ is denoted by û and the

speed of the Alfv�en wave VA is defined by B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

8pn0m
p

. In

rest part of the manuscript, we have used the normalized var-

iables without hat for the sake of simplicity of notation.

In our present work, we have assumed the motion of the

wave carried out only in one space variable, say in x, so

@=@y ¼ @=@z ¼ 0: As a result, ion velocity and magnetic

fields can be expressed as u ¼ uxðx; tÞêx þ uyðx; tÞêy
þuzðx; tÞêz and B ¼ Bxêx þ Byðx; tÞêy þ Bzðx; tÞêz, respec-

tively, where Bx is a constant which can be shown easily

from Equations (4) and (5). In case of 1D, it can be shown

that the operator ðr � BÞ � r � 0. Therefore, using the

062124-2 Adak et al. Phys. Plasmas 23, 062124 (2016)



above assumption, we have obtained the following x compo-

nent normalized equations:

dn

dt
þ n

@ux
@x

¼ 0; (11)

M2 dux

dt
þ 1

n

@

@x

1

2
B2
y þ B2

z

� �

� �

þM2 1

n

@n

@x
¼ 0; (12)

M2 duy

dt
� Bx

n

@By

@x
þ d

dt

1

n

@Bz

@x

� �

¼ 0; (13)

M2 duz

dt
� Bx

n

@Bz

@x
� d

dt

1

n

@By

@x

� �

¼ 0; (14)

dBy

dt
þ By

@ux
@x

� Bx

@uy
@x

� @

@x

duz

dt

� �

� 2

M2

� �

�þ
xc

� �

@

@x

1

n

@By

@x

� �

¼ 0;

(15)

dBz

dt
þ Bz

@ux
@x

� Bx

@uz
@x

þ @

@x

duy

dt

� �

� 2

M2

� �

�þ
xc

� �

@

@x

1

n

@Bz

@x

� �

¼ 0:

(16)

In above equations, the operator d=dt � @=@tþ ux � r and

the physical parameterM ¼ Cs=VA is Alfv�en-Mach number.

III. DERIVATION OF KORTEWEG-DE VRIES BURGERS’

EQUATION

To study the propagation of nonlinear magnetosonic

wave in magnetized, collisional pair-ion plasma from the

basic model equations (11)–(16), we have introduced the fol-

lowing space and time scales:

n ¼ �
1
2 x� ktð Þ; s ¼ �

3
2t; (17)

where the phase velocity k of the propagated linear wave is

normalized by acoustic speed Cs and strength of the nonli-

nearity is determined by the small dimensionless parameter

�. Here, we have assumed that the ratio between ion-ion col-

lision frequency ð�þÞ and cyclotron frequency is small which

can be scaled as33

�þ
xc

� ��
1
2; (18)

to include the collisional effect and also to make the nonlinear

perturbation consistent. So, the dynamical variables n; uj, and
Bj ðj ¼ x; y; zÞ can be expanded in the power series of � as

n ¼ 1þ �nð1Þ þ �2nð2Þ þ � � � ;
ux ¼ 0þ �uð1Þx þ �2uð2Þx þ � � � ;
uy ¼ 0þ �3=2uð1Þy þ �5=2uð2Þy þ � � � ;
uz ¼ 0þ �uð1Þz þ �2uð2Þz þ � � � ;
Bx ¼ cos h;

By ¼ 0þ �3=2Bð1Þ
y þ �5=2Bð2Þ

y þ � � � ;
Bz ¼ sin hþ �Bð1Þ

z þ �2Bð2Þ
z þ � � � :

(19)

Therefore, from the basic equations (11)–(16), with the help

of stretched coordinate (17), scaling (18), and the perturba-

tion expansion (19), we have obtained the following relations

in the lowest powers of �:

u 1ð Þ
x � kn 1ð Þ ¼ 0;

M2ku 1ð Þ
x � sin hB 1ð Þ

z �M2n 1ð Þ ¼ 0;

M2ku 1ð Þ
y þ cos hB 1ð Þ

y þ k
@B 1ð Þ

z

@n
¼ 0;

M2ku 1ð Þ
z þ cos hB 1ð Þ

z ¼ 0;

kB 1ð Þ
y þ cos hu 1ð Þ

y � k
@u 1ð Þ

z

@n
¼ 0;

kB 1ð Þ
z þ cos hu 1ð Þ

z � sin hu 1ð Þ
x ¼ 0:

(20)

This set of equations in the above self-consistently deter-

mines the phase velocity of the linear wave

k2 ¼
1þM2ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM2ð Þ2 � 4M2 cos2 h

q

2M2
: (21)

In dimensional form, the above Equation (21) yields

x2

k2
¼

V2
A þ C2

s

� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
A þ C2

s

� �2 � 4V2
AC

2
s cos

2 h

q

2
; (22)

which is the standard dispersion relation of magnetosonic

wave propagating perpendicular to B0 with two different

modes of propagation, namely, “þ” sign for fast mode and

“�” sign for slow mode. In the limit B0 ! 0; va ! 0; the
above magnetosonic wave (fast mode) turns into ion acoustic

wave ðx2 ¼ C2
sk

2Þ for pair-ion plasma. In case of Cs¼ 0,

this magnetosonic wave (fast mode) turns into Alfv�en wave

ðx2 ¼ V2
Ak

2Þ for cold plasma but in our case Cs cannot be

zero.

The next highest power of � yields the following second

order equations:

@

@n
kn 2ð Þ � u 2ð Þ

x

� �

¼ @n 1ð Þ

@s
þ @

@n
n 1ð Þ

u 1ð Þ
x

� �

; (23)

@

@n
M2ku 2ð Þ

x � sin hB 2ð Þ
z �M2n 2ð Þ

� �

¼ M2 @u
1ð Þ
x

@s

þM2u 1ð Þ
x

@u 1ð Þ
x

@n
þ B 1ð Þ

z

@B 1ð Þ
z

@n
� sin hn 1ð Þ @B

1ð Þ
z

@n

�M2n 1ð Þ @n
1ð Þ

@n
;

(24)

@

@n
M2ku 2ð Þ

y þ cos hB 2ð Þ
y þ k

@B 2ð Þ
z

@n

 !

¼ M2
@u 1ð Þ

y

@s

þM2u 1ð Þ
x

@u 1ð Þ
y

@n
þ cos hn 1ð Þ @B

1ð Þ
y

@n
þ @2B 1ð Þ

z

@s@n

þu 1ð Þ
x

@2B 1ð Þ
z

@n2
þ k

@

@n
n 1ð Þ @B

1ð Þ
z

@n

 !

; (25)
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@

@n
M2ku 2ð Þ

z þ cos hB 2ð Þ
z

� �

¼ M2 @u
1ð Þ
z

@s

þM2u 1ð Þ
x

@u 1ð Þ
z

@n
þ cos hn 1ð Þ @B

1ð Þ
z

@n
þ k

@2B 1ð Þ
y

@n2
; (26)

@

@n
kB 2ð Þ

y þ cos hu 2ð Þ
y � k

@u 2ð Þ
z

@n

 !

¼
@B 1ð Þ

y

@s

þu 1ð Þ
x

@B 1ð Þ
y

@n
þ B 1ð Þ

y

@u 1ð Þ
x

@n
� @2u 1ð Þ

z

@s@n

� @

@n
u 1ð Þ
x

@u 1ð Þ
z

@n

 !

� 2�

M2

@2B 1ð Þ
y

@n2
; (27)

@

@n
kB 2ð Þ

z þ cos hu 2ð Þ
z � sin hu 2ð Þ

x

� �

¼ @B 1ð Þ
z

@s

þu 1ð Þ
x

@B 1ð Þ
z

@n
þ B 1ð Þ

z

@u 1ð Þ
x

@n
� k

@2u 1ð Þ
y

@n2
� 2�

M2

@2B 1ð Þ
z

@n2
: (28)

Finally, eliminating nð2Þ; uð2Þi , and B
ð2Þ
j , where ði ¼ x; y; zÞ

and ðj ¼ y; zÞ from Equations (23)–(28), we have obtained

the following Korteweg-de Vries Burgers’ (KdVB) equation

[with nð1Þ ¼ w]:

@w

@s
þ aw

@w

@n
þ b

@3w

@n3
¼ c

@2w

@n2
; (29)

where a, b, and c are as follows:

a ¼ 1

d
2k2 2M2k2 �M2 � 1ð Þ½ �

þ M2k2

d sin2 h
k2 � 1ð Þ2 M2k2 � 1ð Þ; (30)

b ¼ k2 k2 � 1ð Þ
d

; (31)

and

c ¼ 2�

d
k k2 � 1ð Þ; (32)

where

d ¼ 2

k
M2k4 � cos2 hð Þ: (33)

The nonlinear propagation of fast and slow magnetosonic

wave is governed by the nonlinear evolution equation (29) in

finite beta plasma. The dissipation term c represents the

Burgers’ term in the Eq. (29) that is proportional to �: The
term c varies due to the ion-ion collision. There is no

Burgers’ term in Eq. (29) in the absence of ion-ion collision

and the Eq. (29) reduces to the KdV equation for nonlinear

magnetosonic wave that possesses solitary waves. Therefore,

the ion-ion collision is responsible for the Burgers’ term in

the Eq. (29) that possesses the magnetosonic acoustic shock

solution similar to the solution obtained from viscosity.

However, the slow mode disappears in a finite beta

plasma at h ¼ p=2: In case of slow mode, for the square

Alfv�en-Mach number M2Q1; k2 	 1 and k2 attains its

maximum value 1 at h ¼ 0 for finite M. For the fast mode,

k2 
 1 when M2Q1 and k2 attains its minimum value 1

when M 
 1 at h ¼ 0. At h ¼ p=2; k2 attains a value 1þ
1=M2 for finite M. Moreover, the expression d is infinite at

h ¼ p=2 for the slow mode and the expression a is infinite at

h ¼ 0 for both the modes fast and slow. So that the nonlinear

evolution equation (29) is not valid at h ¼ 0 and h ¼ p=2 in

the above case where d ¼ 0;1 and a ¼ 1. Therefore, we

shall exclude the points h ¼ 0 and h ¼ p=2 in our discussion

to make our theory valid.

IV. MAGNETOSONIC SHOCK STRUCTURES

The Burgers’ term c in Eq. (29) implies the generation

of magnetosonic shock wave in a pair-ion plasma in the pres-

ence of magnetic fields and ion-ion collision. The Eq. (29) is

not completely integrable Hamiltonian system. So that the

energy of Eq. (29) is not conserved. This indicates that the

exact analytical solution of the Eq. (29) is not possible,

though one can derive the approximate solution by using per-

turbation technique. However, we can study the nature of the

analytical solution of Eq. (29) by using moving frame non-

linear analysis. Therefore, we have transformed the Eq. (29)

into the moving wave frame f ¼ Us� n, where U is the

shock wave velocity. Then the first integral of the trans-

formed equation leads to the following equation:

d2w

df2
¼ 1

b
Uw� a

2
w2 � c

dw

df

	 


; (34)

subject to the boundary condition wðfÞ; @fwðfÞ, and @2
fwðfÞ

all ! 0 as jfj ! 1. We recast the above Equation (34) in

the following dynamical form:

dw

df
¼ /;

d/

df
¼ 1

b
Uw� a

2
w2 � c/

	 


: (35)

In the ðw; /Þ plane, the Eq. (35) exhibits two fixed

points, namely, ðw ¼ 0; / ¼ 0Þ and ðw ¼ 2U=a; / ¼ 0Þ.
The first fixed point (0, 0) is always a saddle point. For the

second fixed point, we have to analyze the nature of the

point. For that, we have assumed the asymptotic behavior of

the solution of the form � expðpfÞ34 of the linearized equa-

tion of Eq. (34) and obtained

p ¼ c

2b
16 1� 4Ub

c2

� �1=2
" #

:

From this equation, we can conclude that the fixed point

ð2U=a; 0Þ is a stable focus or stable nodes according as

c294Ub. The stable focus corresponds to the oscillatory

shock structure (dispersion dominates over dissipation) while

the stable node corresponds to a monotonic shock wave (dis-

sipation dominates over dispersion).

In order to do the numerical analysis of the simultaneous

equation (35) with (0, 0) as an initial condition by the

Runge-Kutta Fehlberg (RKF) method, we have taken the

help of MATHEMATICA software based on finite differ-

ence scheme. To obtain the precise results in computation,

we have taken the value of the following parameters as the
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Alfv�en-Mach number M ¼ 0.94 and the normalized ion-ion

collision frequency � ¼ 0:1 (weak dissipation) for the low

beta plasma (strong magnetic field). For the case of high beta

plasma (weak magnetic field), we have taken � ¼ 1:0 (strong

dissipation). Since our calculation is valid in ð0; p=2Þ [range
of h], we have assumed an arbitrary angle h ¼ 45�. The com-

putational results have been depicted in Figs. 1–4. In case of

weak dissipation (� ¼ 0:1), the computational results show

the oscillatory shock wave in both modes fast and slow which

have been depicted in Figs. 1 and 3. We have observed from

Figs. 1 and 3 that the small perturbation of the initial condi-

tion (0, 0) leads to the oscillatory shock structures transited

corresponding to the second fixed point ð2U=a; 0Þ. On the

other hand, for strong dissipation (� ¼ 1), the results show

the monotonic shock wave in both modes fast and slow as

seen in Figs. 2 and 4. These figures show that the small per-

turbation of the initial condition (0, 0) transformed into a

monotonic shock structure transited corresponding to the sec-

ond fixed point ð2U=a; 0Þ. Note that the amplitude of both

shock waves (oscillatory and monotonic) is positive as the

nonlinear coefficient a is always positive.

Finally, to observe the effects of slight temperature dif-

ferences on the shock structures in equal mass pair-ion

plasma, we have plotted the shock strength as a function of

temperature ratio rð¼ Tþ=T�Þ. The variations of shock

strength with r are shown in Figs. 5 and 6. The shock

strength (shock height) is given by the following relation:

wf¼þ1 � wf¼�1 ¼ 2U

a
:

In the above, a is an implicit function of r as can be seen

from the expression (30). To obtain the explicit dependence

of a on r, we have expressed the temperature (T) and Mach

number (M) in the following form:

T ¼ 1þ rð Þ
2

T� and M ¼
ffiffiffiffiffiffiffiffiffiffiffi

1þ r

2

r

M�;

where M� ¼ Cs�=VA and Cs� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

T�=m
p

(negative ion

acoustic speed). Inserting all these in (30), we have com-

puted a (nonlinearity coefficient) and plotted the shock

strength vs temperature ratio r for fast and slow modes in

Figs. 5 and 6, respectively. Both the figures show that the

shock strength increases initially with the increase of tem-

perature ratio (r); at certain value of r, it assumes a maxi-

mum and then decreases continuously with the increase of

temperature ratio. This can be understood physically as fol-

lows. The particle thermal velocity increases with the

increase of TþðT�Þ which leads to the wave-particle inter-

action mechanism. This interaction prevents the formation

of a shock wave and thereby reduces the shock strength in

FIG. 1. Oscillatory shock structure of Eq. (35) in case of fast mode against f

for the plasma parameter M¼ 0.94, h ¼ 45� � ¼ 0:1, and U ¼ 1:0; around
the fixed point ð2U=a; 0Þ.

FIG. 2. Monotonic shock structure of Eq. (35) in case of fast mode against f

for the plasma parameter M¼ 0.94, h ¼ 45� � ¼ 1:0, and U ¼ 1:0; around
the fixed point ð2U=a; 0Þ.

FIG. 3. Oscillatory shock structure of Eq. (35) in case of slow mode against

f. The plasma parameters are same as in Fig. 1.

FIG. 4. Monotonic shock structure of Eq. (35) in case of slow mode against

f. The plasma parameter are same as in Fig. 2.

062124-5 Adak et al. Phys. Plasmas 23, 062124 (2016)



pair-ion plasma. This interplay between the phase velocity

and thermal velocity plays crucial role for the formation of

shock wave even in electron-ion plasma.35 As a conse-

quence, in case of fast mode owing high phase velocity, the

wave-particle interaction mechanism acts into play for rela-

tively large value of r that yields the maximum shock

strength and after that the shock strength decreases as

observed in Fig. 5. Qualitatively similar behavior is

observed for slow mode as shown in Fig. 6. However, in

this case, the wave-particle interaction acts into play for rel-

atively low value of r due to the low phase velocity of the

wave. Also note that instead of the above expressions, the

representations of T and M in terms of Tþ and Mþ will not

change our result as we have considered the (mass) sym-

metric plasma.

V. CONCLUSIONS

In this paper, we have investigated the nonlinear propa-

gation of magnetosonic shock wave in collisional pair-ion

plasma consisting of positive and negative ions under the

action of uniform magnetic field. The external magnetic field

lies in x � z plane making an angle h with x-axis and as a

result the propagation vector lies in x � y plane. As per the

experimental observation, the masses of both ions are taken

to be equal and the temperatures are different. We have taken

the two-fluid model to describe the dynamics of magneto-

sonic wave. Investigation shows that the magnetosonic wave

has two modes: one is fast mode and another is slow mode.

The propagation of nonlinear magnetosonic wave is gov-

erned by the KdVB equation. The Burgers’ term represents

the existence of dissipation in the system. The dissipation in

this dynamical model arises through the collision between

positive (negative) ions and negative (positive) ions. This

indicates that ion-ion collision in the system is responsible

for the Burgers’ term in KdVB equation. The Burgers’ term

in KdVB equation possesses the physics of magnetosonic

shock wave. The computational results have shown the exis-

tence of both oscillatory and monotonic shock wave depend-

ing on the strength of the dissipation in both fast and slow

mode. The amplitude of the shock wave is positive as the

nonlinear coefficient (a) of KdVB equation is always posi-

tive, though our investigation is valid in (0; p=2) [range of

h]. At h¼ 0, the nonlinear coefficient a becomes infinitely

large for both modes (fast and slow). On the other hand,

magnetosonic wave disappears for the slow mode at

h ¼ p=2. As a result, RPT is not applicable to study the non-

linear magnetosonic shock wave when the magnetic field is

directed along x-axis or along z-axis in the pair-ion plasma.

Finally, we can conclude that the present investigation may

be applicable to study the shock wave generation in astro-

physical environment, supernova explosions, etc., and in lab-

oratory experiments where equal mass pair-ion plasma

exists.
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