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1 Introduction

The famous characterisation due to Paul Lévy for Brownian motion contained in Doob ([D],
page 384, Theorem 11.9), for instance, says that if X = (Xt)t≥0 is a martingale with continuous
paths such that X2

t − t is also a martingale, then (Xt) is the standard Brownian motion.

This characterisation may be restated as: for a process X with continuous paths, a certain
pair of polynomials in t and Xt being martingales, determines the distribution of X uniquely,
and in fact as that of a Brownian motion. We call such polynomials time-space harmonic for
the process X concerned; an exact definition follows. It is well-known that all the two-variable
Hermite polynomials

Hk(t, x) = (−t) kex2/2t ∂k

∂xk
(e−x2/2t), k ≥ 1,

of which x and x2− t are the first two, are time-space harmonic for Brownian motion. P. McGill,
B. Rajeev and B. V. Rao demonstrated in [MRR] that actually, any two of these determines
Brownian motion, modulo the aforesaid continuous-path property, thereby generalising Lévy’s
characterisation.

Both these results depend crucially on the assumption of the continuity of the paths of the
process. Indeed, if we remove this assumption, then there are several other processes, includ-
ing the standard compensated Poisson and Gamma processes, which will also satisfy both the
martingale conditions involved in Lévy’s characterisation. We cite more examples of this kind
in the final section.

A similar characterisation, referred to sometimes as Watanabe’s characterisation [W], also exists
for the standard Poisson process. This characterisation uses, in fact, only a single polynomial.
The assumption that one imposes here is that the given process be a simple point process. This
condition too, as one can see from the example of Brownian motion, cannot be dropped.

Both the conditions imposed on the aforementioned processes to achieve uniqueness of their
respective laws can be seen as ‘path properties’ of the process. A natural question that arises,
then, is the following : can one somehow render these ‘path properties’ inessential by specifying,
if necessary, some more two-variable polynomials? Or at least, can one have a class of processes
such that they are the only members of this class with a certain number of time-space harmonic
polynomials specified?

Besides these two processes, there are also other processes of interest about which we may ask a
similar question; namely, whether it is possible to characterise the gamma process, for instance,
through a finite sequence of time-space harmonic polynomials of the process. More generally, our
aim in this paper is to exhibit a class of processes, rich enough to contain all the three processes
cited above, in which a characterisation of those members which are determined by finitely many
time-space harmonic polynomials is available. Indeed, a class of processes which seems a very
natural choice, in the sense that all the three are prominent examples of its members, suffices
to achieve this end. This is the class of the familiar Lévy processes.

In [S2] (Theorem 6), it was proved that a whole (infinite) sequence of time-space harmonic
polynomials always determines all the moments of a Lévy process. Even this, as a counterex-
ample we present in the last section shows, does not necessarily characterise its distribution.
The point of this paper is that for certain Lévy processes, which we describe fully, finitely many
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time-space harmonic polynomials are enough to determine its law completely. This also poses
another interesting question for such processes, namely, what is the minimum number of time-
space harmonic polynomials required to obtain a characterisation? We determine the number
of polynomials required for such a characterisation in terms of the support of the Lévy measure
of the process. We also extend our results to a more general class of additive processes.

Our characterization shows that the answer to the question we raise is in the affirmative for the
first two examples and in the negative for the third one. These and other examples constitute
the last section. A key ingredient of our proofs is the characterisation of finite measures on
R which are determined by finitely many of its moments, interpreted as integrals of respective
powers. This and the other necessary preparatory results are derived in the third section. The
next section contains the basic definitions and the statements of the theorems, while the fourth
is devoted to their proofs.

2 Definitions and Statements of Theorems

We start with an additive process X starting at 0, that is, {Xt : t ≥ 0} is a process with indepen-
dent increments such that X0 = 0. We also assume that X has no fixed time of discontinuity and
r.c.l.l. (right continuous with left limits) paths. X is referred to as a Lévy process if it is homo-

geneous as a Markov process; in other words, if its increments are stationary (Xt+h −Xt
d
= Xh)

apart from being independent.

Let us denote by (Ft)t≥0 the natural filtration of the process X, that is, for t ≥ 0, Ft = σ<Xu :
0 ≤ u ≤ t>.

Before we proceed further, we recall the main definitions an some facts from [S1] and [S2].

Definition 2.1 A time-space harmonic polynomial for a process X is a polynomial P in two
variables with P (0, 0) = 0, such that the process {Zt := P (t,Xt); t ≥ 0} is an Ft-martingale.

We denote by P = P(X), the vector space of all time-space harmonic polynomials for X with
P (0, 0) = 0. Define, for each fixed k ≥ 1, the subspace

Pk = Pk(X) = {P ∈ P : P (t, x) is of degree k in the variable x}.

Clearly, then, P = ∪k≥1Pk.

For every fixed k ≥ 1, a necessary and sufficient condition for Pj(X) to be non-empty for every
j, 1 ≤ j ≤ k, for an additive process X, was obtained in [S1] (Theorem 5.6), which we state
below as Proposition 2.1. When X is a Lévy process, since this condition is trivially satisfied,
for every k ≥ 1, we have Pk(X) 6= ∅ (provided, of course, E(|X1| k) < ∞). This is recorded as
Corollary 2.1.

We shall throughout assume that additive processes X under consideration satisfy what is known
as the ‘support condition’; namely, that for every positive integer k, there exists a t ≥ 0 such
that the support of Xt contains at least k points. This condition again is trivially satisfied by
nondeterministic Lévy processes.
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Proposition 2.1 If X is an additive process with E|Xt|k < ∞ for each t ≥ 0, then Pj(X) 6= ∅
for each 1 ≤ j ≤ k if and only if EX j

t is a polynomial in t fo 1 ≤ j ≤ k.

In this case, any sequence {Pj ∈ Pj : 1 ≤ j ≤ k} spans ∪1≤j≤kPj and determines the first k
moment functions of X.

Corollary 2.1 For a Lévy process X with E|X1|k < ∞, Pj 6= ∅ for all 1 ≤ j ≤ k. Any sequence
{Pj ∈ Pj : 1 ≤ j ≤ k} spans ∪1≤j≤kPj and determines the first k moment functions of X (or
equivalently, the first k moments of X1).

Our point of departure comes with the question : when do {Pj : 1 ≤ j ≤ k} for some k ≥ 1
determine the law of a Lévy process completely? For this we introduce the following definition.

Definition 2.2 Given a class C of additive processes, an element X of C is called finitely
polynomially determined (fpd for short) if for some k ≥ 1, the classes Pj(X), 1 ≤ j ≤ k are each
nonempty and together, determine the law of the process within C. The subcollection consisting
of fpd members of C is denoted C̃.

To be precise,

C̃ = {X ∈ C : there exists k ≥ 1 such that Y ∈ C,

Pj(Y ) = Pj(X) for all 1 ≤ j ≤ k ⇒ Y
d
= X}.

Our aim in this paper is to present a couple of examples of C for which a complete description of
its fpd members, or equivalently, of C̃, available. The first is the class of the Lévy processes and
the second a more general class. Although the former class is already contained in the latter, it
is much simpler to treat this case separately. Besides, the method here is quite instructive, and
suggests the line of attack for the more general case.

Clearly, if {Pj : 1 ≤ j ≤ k} determine the law of the process, then so do {Pj : 1 ≤ j ≤ k + i}
for any i ≥ 1. The natural question that arises now is : how many polynomials do we need to
determine a fpd process? This motivates the next definition.

Definition 2.3 An process X in C̃ is called k-polynomially determined if k is the minimum
number for which Pj, 1 ≤ j ≤ k determines the law of X, i.e., {Pj : 1 ≤ j ≤ k} determines the
law of X in C while {Pj : 1 ≤ j ≤ k − 1} does not.

Clearly we can not expect a process to be fpd unless at least P2 6= ∅, since any two additive
processes whose mean functions match will have the same P1 (and there are infinitely many
such, since adding another independent 0-mean process leaves the mean function unchanged).
In the sequel, we assume throughout that any process X under consideration satisfies EX 2

t < ∞
for all t.

The distribution of each Xt for a Lévy process X being infinitely divisible, its characteristic
function (c.f.) admits a ‘Lévy-Khintchine’ representation (see [GK], page 76):

log(E(eiαXt)) = iαβt − α2σ2t

2
+ t

∫

R\{0}

(

eiαu − 1 − iαu

1 + u2

)

l(du)
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where β ∈ R, σ ≥ 0 and l is a measure having no mass at 0. This measure l is called the Lévy
measure for the process X. Under our assumption on the finiteness of second moments, the c.f.
has an alternative form:

log(E(eiαXt)) = iαmt + t

∫

R

(
eiαu − 1 − iαu

u2

)

η(du) (2.1)

where m ∈ R is the mean of the random variable X1 and η is a finite measure, called the
‘Kolmogorov measure’. The integrand is defined by the limiting value for u = 0. The explicit
relation between the measures η and l is given by

η(A) = σ21A(0) +

∫

A\{0}
u2dl(u) (2.2)

where A ∈ B(R). It is immediate from the relation (2.2) that whenever η has finite support, so
has l and vice versa. We now state

Theorem 2.1 A Lévy process is fpd if and only if its Lévy measure, or equivalently, Kolmogorov
measure is finitely supported.

The next theorem gives the number of polynomials required to determine an fpd Lévy process
X. This will in particular imply that this number is always even. For a Borel measure µ on
the line, let Card(µ) denote the cardinality of its support. No distinction is made here between
countably infinite and uncountable cardinalities, and both are treated as +∞.

Theorem 2.2 A Lévy process X with Kolmogorov measure η is k-polynomially determined if
and only if k = 2Card(η) + 2.

While the previous Theorem 2.1 follows as a consequence of the last one, it is inconvenient to
try to prove the latter directly, bypassing the former, since it plays a crucial role in first ensuring
that the Lévy measure or equivalently, the Kolmogorov measure is finitely supported. As the
proof will bear out, only after this has been established is it easy to find the exact relationship
between k and Card(η).

Now we turn to the more general case. In analogy to Lévy processes, the c.f. of a general
additive process X also has a similar ‘Lévy-Khintchine’ representation

log E(e iαXt) = iαβ(t) − α2σ2(t)

2
−

∫ (

e iαu − 1 − iαu

1 + u2

)

L([0, t] ⊗ du)

= iαm(t) +

∫ (
eiαu − 1 − iαu

u2

)

K([0, t] ⊗ du) (2.3)

where β, m and σ ≥ 0 are continuous functions, the last also being increasing, and L and K are
σ-finite Borel measures on [0,∞) × R, called respectively the ‘Lévy measure’ and ‘Kolmogorov
measure’ of X. Actually, it is not quite L and K but their ‘derivatives’ in a certain sense with
respect to t, if they exist, that are the exact analogue to the Lévy measure and Kolmogorov
measure for the homogeneous case, and might be considered more deserving candidates for those
names.
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In view of the above, C, the class of processes that we consider for the general case consists of
those additive processes for which the Kolmogorov measure admits a ‘derivative’ κ in the sense
that κ is a transition measure on [0,∞) × B satisfying

K([0, t] × A) =

∫ t

0
κ(s,A)ds ∀ t ≥ 0, A ∈ B.

In this case, it can be checked that moreover,
∫

fdK =

∫

f(t, u)κ(t, du)dt (2.4)

whenever f : [0,∞) × R → R is a function such that either side is well-defined. We designate κ
as ‘derivative measure’ of K.

This class C is fairly rich, containing such examples as Gaussian additive processes, nonhomo-
geneous compound Poisson processes etc. Naturally, any additive process which arises as the
independent sum of two processes of the above kinds, also belongs to C. It should also be
noted that C contains all Lévy processes, for which κ(t, ·) ≡ η(·). The necessary and sufficient
condition characterising elements of C̃ that we get would therefore naturally be expected to be
in terms of the derivative measure κ(·, ·) It appears quite difficult even to formulate this, or a
simila condition, in terms of the Kolmogorov measure K (or the Lévy measure L) instea of κ.
In fact, this seems to be precisely the stumbling block in obtaining a characterisation, among
all additive processes, of those which are fpd.

The characterisation in this case is that the Kolmogorov measure be supported on the graphs of
finitely many measurable functions. In similarity to the homogeneous case, it is convenient to
first show this fact, and only after establishing this, to give the exact relationship between the
number of functions and number of polynomials.

Theorem 2.3 Let X be an additive process of the class C. Then

(a) If there exists an n ≥ 0 and a measurable function (x1, . . . , xn, p1, . . . , pn) : [0,∞) →
R

n × [0,∞)n such that

• for each 0 ≤ j ≤ 2n,
∑n

i=1 pi(t){xi(t)} j is a polynomial in t almost everywhere, and

• κ(t, du) =
∑n

i=1 pi(t) δxi(t)(du), t ≥ 0, is a version of the derivative measure,

and m(·) is a polynomial, then X is fpd in C.

(b) Conversely, suppose X is fpd in C, and is determined by {Pj(X), 1 ≤ j ≤ k}. If κ is a
version of the derivative measure associated with X, then there exists a measurable function
(x1, x2, . . . , xk, p1, p2, . . . , pk) : [0,∞) → R

k × [0,∞) k such that

κ(t, du) =

k∑

i=1

pi(t) δxi(t)(du) for almost every t.

Further, this function has the property that for all j, 0 ≤ j ≤ k − 2,

n∑

i=1

pi(t){xi(t)} j

is a polynomial for almost every t.
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Here and in the sequel, when we say that a function is a polynomial in t almost everywhere, we
mean the existence of a polynomial in t with which the stated function agrees for almost every
t ≥ 0.

In analogy with Theorem 2.2 of the homogeneous case, in the general case too the same relation
between the cardinality of the support of the derivative measure and the number of polynomials
required to determine the underlying process obtains. Here, since the derivative measure κ(t, ·)
depends on t, the relation turns out to involve the maximum value of Card(κ(t, ·)) with positive
measure. Let ℓ denote the lebesgue measure on the line.

Theorem 2.4 Suppose X is an additive process and κ a version of its derivative measure. Then
X is k-p.d. if and only if k = 2n + 2, where for Lebesgue almost every t ≥ 0, Card(κ(t, ·)) ≤ n
and for a set of t of positive Lebesgue measure, Card(κ(t, ·)) = n.

Theorem 2.4 essentially says that X is k-p.d. if and only if k is even and

k

2
− 1 = max{j : ℓ{t : Card(κ(t, ·)) = j} > 0}.

We show later that for every j, the set {t : Card(κ(t, ·)) = j} is Borel.

What do our results exactly mean for the underlying process? In the first case, it means that
a Lévy process is fpd if, and only if, its jumps, when they occur, can have sizes only in a fixed
finite set. For the Lévy measure (see Ito [I], page 145) is nothing but a multiple of the “jump
distribution” of the process. However, finitely supported jump distributions conform to the
definition as the distribution of the “first jump”.

In the non-homogeneous case too, our result implies that jumps at any time t can take values
in a finite set, but there is a difference; namely, that this set now depends on the time t. For,
the form of the derivative of L we referred to earlier will also be the same as that of K, only,
whereas the former puts no mass at [0,∞) × {0}, the latter will in general do so, unless the
Gaussian part of the process is deterministic.

3 A Key Lemma

The key result that is used in proving the results is the following lemma. Recall that by the
k-th moment of a finite measure on (R,B(R)) we mean the integral, provided it exists, of the
function x 7→ x k with respect to that measure.

Lemma 3.1 A finite measure µ on R is determined by finitely many of its moments if and only
if it is finitely supported. In such a case, the minimal number of moments (excluding the zeroth
moment) that are required to determine µ is 2Card(µ).

Proof : Suppose first that Card(µ) is finite. Then it can be written as follows:

µ =

n∑

i=1

piδri
(3.5)
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for some n ≥ 1, where pi > 0 for i = 1, . . . , n, δa is the Dirac measure at the point a and ri’s
are distinct real numbers. We show that 2n many moments determine the measure µ. Suppose
that there exist another finite measure µ such that

∫

R

ujµ(du) =

∫

R

ujµ(du) for j = 0, 1, . . . , 2n. (3.6)

Further, from (3.5), we have

∫

R

n∏

j=1

(u − ri)
2µ(du) =

n∑

i=1

pi

n∏

j=1

(ri − rj)
2 = 0.

The above integral can be expressed as a function of the constants r1, . . . , rn and the first 2n
moments of µ only. Since

∫

R
ujµ(du) =

∫

R
ujµ(du) for j = 0, 1, . . . , 2n, we have

∫

R

n∏

j=1

(u − ri)
2µ(du) = 0.

But the function f(u) =
∏n

j=1(u − ri)
2 is a non-negative function vanishing only at the points

r1, r2, . . . , rn, therefore we have
µ({r1, . . . , rn}c) = 0.

In other words, µ can be written as

µ =

n∑

i=1

p′iδri

where p′i ≥ 0 for i ≥ 0. It remains to show p′i = pi, 1 ≤ i ≤ n. Now, from the form of µ and µ,
we have the following sets of linear equations:

n∑

i=1

pir
j
i =

∫

R

ujµ(du) and

n∑

i=1

p′ir
j
i =

∫

R

ujµ(du), j = 0, 1, . . . , n − 1.

This can be expressed as
Ap = C = Ap′

where

A =








1 1 . . . 1
r1 r2 . . . rn
...

...
...

rn−1
1 rn−1

2 . . . rn−1
n








,p =








p1

p2
...

pn








,p′ =








p′1
p′2
...

p′n








and C =








∫

R
µ(du)

∫

R
uµ(du)

...
∫

R
un−1µ(du)








=








∫

R
µ(du)

∫

R
uµ(du)

...
∫

R
un−1µ(du)








.

Since the matrix A is a non-singular (Vandermonde) matrix, we have p′ = p. This completes
the proof of the if part of the first statement.
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For the only if part, suppose that µ is not finitely supported. Fix any k ≥ 1. We exhibit another
finite measure µ such that the first (k − 1) moments and total measures of µ and µ match.

Since the support of µ is not finite, we can pick (k + 1) distinct points r1, r2, . . . , rk, rk+1 in
the support of µ and take open neighbourhoods Ai of ri, i = 1, 2, . . . , k + 1 with µ(Ai) > 0 and
Ai ∩ Aj = ∅. Now consider the following real vector space of signed measures.

V =

{

ν : ν(A) =

k+1∑

i=1

ciµ(A ∩ Ai), ci ∈ R, A ∈ B(R)

}

.

This clearly has dimension k + 1. Define now the linear map Λ : V → R
k as

Λ(ν) =

(∫

ν(du),

∫

uν(du), . . . ,

∫

u k−1ν(du)

)

.

Since the range of Λ (a subspace of R k ) has dimension at most k, the nullity of Λ must be at
least 1. Choose a non-zero element in the null space of Λ, say

ν ′(A) =
k∑

i=1

ciµ(A ∩ Ai),

and scale it suitably so that |ci| < 1 for i ≥ 1. Let us call the resulting signed measure ν. We
now define µ by

µ(A) = µ(A) + ν(A).

Clearly µ is a positive measure and since ν is non-zero µ 6= µ. Further, for each j = 0, 1, . . . , k−1,
we have ∫

ujµ(du) =

∫

ujµ(du) +

∫

ujν(du) =

∫

ujµ(du).

To prove the second statement, we observe that dividing by the whole mass of the measure µ,
we can reduce the question to a problem about probability measures, so we now consider only
the case of probability measures. We require two subsidiary lemmas for this.

Lemma 3.2 Given a symmetric matrix A of order n×n, we can associate a probability measure
µA supported on at most n points such that for each j ≥ 1, the j-th moment of µA is given by
the first diagonal entry of the matrix Aj .

Proof : Let {e0, e1, . . . , en−1} be the standard basis of Rn and (·, ·) the Euclidean inner prod-
uct. Since A is symmetric, its eigenvalues, say λ1, λ2, . . . , λn are real, and we can write its
spectral decomposition as A =

∑
λjPj where Pj ’s are the orthogonal projections of rank 1 onto

eigenspaces corresponding to the eigenvalues λj .

Now we define the probability measure µA supported on λ1, λ2, . . . , λn with masses (e0, P1e0),
(e0, P2e0), . . . , (e0, Pne0) respectively. Since (e0, Pje0) ≥ 0 and

∑

i(e0, Pie0) = (e0,
∑

i Pie0) =
(e0, Ie0) = 1, this indeed defines a probability measure. Moreover, ∀j ≥ 1, we have that
Aj =

∑

j λj
iPi and hence

∫

xjµa(dx) =
∑

i

λj
i (e0, Pje0) = (e0,

∑

j

λj
iPie0) = (e0, A

je0).
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This completes the proof of the lemma. �

Lemma 3.3 Given a probability measure µ supported on a set of n distinct points there exists
a symmetric tridiagonal matrix A of order n × n such that µ = µA with the property that if its
off-diagonal entries are denoted by b0, b1, . . . , bn−2, then bj 6= 0 for j = 0, 1, . . . , n − 2.

Proof : Since µ is supported on n points, L2 (µ) is an n-dimensional vector space. Let
{f0, f1, . . . , fn−1} be the orthonormal basis of orthogonal polynomials obtained by applying
the Gram-Schmidt process on {1, x, x2, . . . , xn−1}, which can easily be seen to be linearly inde-
pendent. Notice that f0 = 1.

Now consider the linear operator A on L
2(µ) defined as Af(x) = xf(x). We claim that the

matrix representation of A with respect to the basis {f0, f1, . . . , fn−1} is tridiagonal.

If Sj = span{1, x, . . . , xj−1} then the span of {f0, f1, . . . , fj−1} is also Sj. Thus, A(Sj) ⊆ Sj+1.
This means that the representation of A with respect to {f0, f1, . . . , fn−1} will be of the form:

A =














⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆
0 ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆
0 0 ⋆ . . . ⋆ ⋆ ⋆ ⋆
...

...
...

...
...

...
...

...
0 0 0 . . . 0 ⋆ ⋆ ⋆
0 0 0 . . . 0 0 ⋆ ⋆














where ⋆ denotes a possibly non-zero entry. Since A is a self-adjoint operator, the resulting matrix
is symmetric. Thus, it will be tridiagonal, that is,

A =












a0 b0 0 . . . 0 0 0 0
b0 a1 b1 . . . 0 0 0 0
0 b1 a2 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 . . . 0 bn−3 an−2 bn−2

0 0 0 . . . 0 0 bn−2 an−1












.

Now, we note that Aj represents multiplication by xj for j ≥ 1. Therefore,

(e0, A
je0) = (f0, x

jf0) =

∫

f0x
jf0µ(dx) =

∫

xjµ(dx)

for each j ≥ 1. So by the first part of the argument, mj(µ) = mj(µA) for j = 1, 2, . . . where
mj(ν) stands the j-th moment of the measure ν. As we already know that µ is supported only
on n points, we have µA = µ.

Also we now claim that bj 6= 0 for 0 ≤ j ≤ n − 2. If not,

Afj = bj−1fj−1 + ajfj + bjfj+1 = bj−1fj−1 + ajfj.
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Then, we have
span{f0, Af0, Af1, . . . , Afj} ⊆ | : span{f0, f1, . . . , fj}.

But since span{f0, f1, . . . , fj} = span{1, x, . . . , xj} and A is a linear operator, we have

span{Af0, Af1, . . . , Afj} = span{A1, Ax, . . . , Axj} = span {x, x2, . . . , xj+1}.

Therefore, span{f0, f1, . . . , fj+1} = span{1, x, . . . , xj+1}
= span{f0, Af0, Af1, . . . , Afj}
⊆ span{f0, f1, . . . , fj}.

This contradicts the orthogonality of the vectors {f0, f1, . . . , fj+1}. �

Now we are in a position to complete the proof of the key lemma. We assume that µ is supported
on n points. We now need to construct another measure µ such that first (2n − 1) moments of
both µ and µ are same.

Consider the tridiagonal matrix A as in Lemma 3.3 such that µ = µA. We construct another
tridiagonal matrix B of order (n + 1) × (n + 1) in the following way. Choose bn−1, an ∈ R such
that bn−1 6= 0 and consider the matrix

B =

(
A gn

g′n an

)

where g′n = (

n−1
︷ ︸︸ ︷

0 0 . . . 0 bn−1) and finally set µ = µB.

Now, we claim that the first diagonal entries of Aj and Bj are same for j = 1, 2, . . . , 2n− 1 and
prove it for j = (2n − 1) only. For other values of j, the same argument works. We have,

B2n−1(1, 1) =
∑

b1,i1bi1,i2 . . . bi2n−1,1

where bi,j is the (i, j)-th entry of the matrix B and the sum extends over all such possible
combinations with each bi,j non-zero.

Now, for each such possible combination, we can assign a path of (2n − 1) steps, on the set of
numbers {1, 2, . . . , n + 1} in the following way: for the combination b1,i1 , bi1,i2 , . . . bi2n−2,1 we
assign the path 1 → i1 → i2 → i3 . . . → i2n−2 → 1 (the first step is 1 → i1, the second is i1 → i2
and so on).

Now since the given matrix is tridiagonal, bi,j is non-zero only when |i− j| ≤ 1. In other words,
the path can move from a point i to another point j which is at most at a distance 1 from i
(i.e., to i + 1, i − 1 or i). So, a path starting from 1, will take at least n steps to reach n + 1
and will take at least another n more steps to come back to 1. Therefore, any path of (2n − 1)
steps starting from 1 cannot reach n + 1. This means that no term of the type bi,n+1 or bn+1,i

can be present in the above sum. This proves that the first diagonal entry of the matrix A2n−1

is same as that of B2n−1.

Similarly, considering the first diagonal entry of Aj and Bj, for any j = 1, 2, . . . , 2n − 1, we
observe that ∫

xjµB(dx) = (e0, B
je0) = (e0, A

je0) =

∫

xjµA(dx)
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for j = 1, 2 . . . , 2n − 1.

Finally, to conclude that µ = µB 6= µA = µ, we show that µB and µA differ in their 2n-
th moments, that is, B2n(1, 1) 6= A2n(1, 1). For this, we simply repeat the argument of the
previous paragraphs to observe that

B2n(1, 1) =
∑

b1,i1bi1,i2 · · · bi2n−1,1

so that the only way any of the indices ij can equal n+1 is through i1 = 2, i2 = 3, . . . , in = n+1,
in+1 = n, . . . , i2n−1 = 2. Thus, B2n(1, 1) is free of an, and also the only term in it that involves
bn−1 equals

∏n−1
i=0 b2

i . In other words,

B2n(1, 1) =
n−1∏

i=0

b2
i +

∑

1≤ij≤n

b1,i1bi1,i2 · · · bi2n−1,1 =
n−1∏

i=0

b2
i + A2n(1, 1) 6= A2n(1, 1).

This completes the proof. �

Remark 3.1 The choice of the matrix B from the matrix A as in the above proof can be made
by the application of a fixed continuous function R

2n−1 → R
2n+1 by putting 1, for example, for

both the numbers an and bn−1.

The pair of lemmas 3.2 and 3.3 establish a one-to-one correspondence between the set of Borel
probability measures Pn supported on n points and An, a certain set of symmetric tridiagonal
matrices of order n; namely, those which arise as described in the proof of Lemma 3.3. A
natural question then is, whether this correspondence has any topological significance. Clearly,
An, looked at as a subset of R2n−1 , inherits the relative topology, and we can equip Pn with the
relative topology inherited from the topology of weak convergence. The following lemma will
yield the bicontinuity of this bijection. We shall require this result for the non-homogeneous
case.

Lemma 3.4 If Al, l ≥ 1 and A are in An, then µAl
converges weakly to µA if and only if Al

converges to A as l → ∞.

Proof : Let us write, for simplicity, µ for µA and µl for µAl
, l ≥ 1. The “if” part of the statement

is easily derived from the fact that the convergence of Al to A implies the convergence of each
moment of µl to the corresponding moment of µ. Since µ, being supported only on a finite set
of points, is determined by its moments, this gives us the required weak convergence.

For the “only if” part, we claim first that all moments of µl converge to the corresponding
moments of µ. This is because all µl must be supported inside one compact set (taking union
of closed intervals around the points in the support of µ will suffice).

As a result, the entries of the matrix Al, which are but rational, hence continuous, functions
of the moments of µl, will also converge to the respective functions of the moments of µ, or in
other words, the corresponding entries of A. �
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Remark 3.2 If the tridiagonal matrices A and B are as in Remark 3.1, the foregoing lemma
establishes the fact that the resulting measure µB is also obtained from µA by the application
of a continuous function from Pn into Pn+1, where both sides inherit the topology of weak
convergence.

4 Proofs of The Theorems

We first recall from section 2 the necessary and sufficient condition for non-emptiness of {Pj :

1 ≤ j ≤ k} : the moment functions t 7→ EXj
t , be polynomials ∀ 1 ≤ j ≤ k. In order to interpret

our problem in terms of the Lévy measure and Kolmogorov measure, we need to consider what
are known as the cumulants of Xt for t ≥ 0.

The cumulant of order j ≥ 1 of a random variable is defined as i−j times the j-th derivative
of the logarithm of its characteristic function at 0 if it exists (see Gnedenko [G], page 253).
Therefore the equivalence of the existence of cumulants and moments of each order follows. In
particular, the first cumulant equals the mean and the second, the variance. Further, one can
easily show that the cumulant of every order j is a polynomial in the moments of order 1 through
j; and vice versa. Thus, an equivalent formulation to the condition for existence of time-space
harmonic polynomials given earlier in Proposition 2.1 is that each of the first k cumulants of
Xt exist and also be polynomials in t. These, seen as functions of t, are called the cumulant
functions of the process and denoted cj(t), j ≥ 1, in the sequel. Of course, as mentioned earlier,
this condition is trivially satisfied by Lévy processes X since any cumulant of Xt is just the
corresponding cumulant of X1 multiplied by t.

The importance of the function m and the Kolmogorov measure K for an additive process arise
in this context. It turns out that m(t) is the mean, hence the first cumulant of Xt, and for j ≥ 2,
the j-th cumulant of Xt exists if and only if the integral

∫
u j−2K([0, t]⊗ du) is finite and in this

case they are equal. In other words, for t ≥ 0,

c1(t) = m(t) and cj(t) =

∫

u j−2K([0, t] ⊗ du). (4.7)

In the case when all the cumulants exist this follows easily from (2.3) since

∞∑

j=1

cj(t)
(iα)j

j!
= log E(e iαXt) =

∞∑

j=2

(iα)j

j!

∫

u j−2K([0, t] ⊗ du).

Of course, for Lévy processes X the quatities in the right hand sides of (4.7) reduce to t ·m and
t
∫

u j−2η(du), both clearly polynomials.

Proof of Theorem 2.1 : First suppose that X is a Lévy process with Kolmogorov measure
ηX and Card(ηX) = n. We have to exhibit a k such that whenever for some Lévy process Y we

have, Pj(Y ) = Pj(X) for all 1 ≤ j ≤ k, then Y
d
= X. We show this for k = 2n + 2.

For a Lévy process Z (Z = X or Y ), the mean of Z1 and the Kolmogorov measure are denoted
by mZ and ηZ respectively. It is clear that we have to show mY = mX and ηY = ηX .
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From the equation (4.7) and the comment following it, we have

mX = mY and

∫

R

ujηX(du) =

∫

R

ujηY (du) for j = 0, 1, . . . , 2n. (4.8)

Since, ηX is supported on n points, we now apply Lemma 3.1 to conclude that ηX = ηY .

For the converse part, we assume that ηX is not finitely supported. For any fixed k ≥ 1, we
have to contruct a Lévy process Y such that Pj(Y ) = Pj(X) for all 1 ≤ j ≤ k. From the
foregoing discussion, it is clear that this is tantamount to obtaining a finite measure η 6= ηX

such that
∫

ujηX(du) =
∫

ujη(du) for j = 0, 1, . . . , k − 2, and setting mY = mX and ηY = η.
Since ηX is not finitely supported, the first assertion of Lemma 3.1 guarantees the existence of
such a measure η and this completes the proof of the theorem. �

Proof of Theorem 2.2 : In view of the proof of Theorem 2.1, it is enough to show that if for
a Lévy process X, Card(ηX) = n, then {Pj : 1 ≤ j ≤ 2n + 1} does not determine the law of X;
that is, there exists another Lévy process Y such that Pj(X) = Pj(Y ) for 1 ≤ j ≤ 2n + 1 such
that the laws of X and Y are not the same. As we have noted in the proof of Theorem 2.1, it
is equivalent to constructing another measure η such that η 6= ηX but

∫
ujηX(du) =

∫
ujη(du)

for j = 0, 1, . . . , 2n − 1 and setting mY = mX and ηY = η. But this is achieved by the second
part of Lemma 3.1. �

To carry out the same program in the non-homogeneous setup, we first need an important result
(Lemma 4.1). But first let us briefly touch on a heuristic justification for expecting it to be true.
If for a substantial set of points t, κ(t, ·) were supported on more than n points, then like in the
homogeneous case, it could not be determined uniquely from the first 2n, leave alone n, of its
moments. However, unlike in the homogeneous case, to define the law of another process in C,
one has to handle not just the distribution of one single random variable, but that of the whole
process; that is, define either a different mean function or a different Kolmogorov measure, or
equivalently, derivative measure κ which would keep the first n moment functionss of the process
intact. The crux of the matter lies naturally in constructing κ while retaining its measurability
with respect to its first argument. This requires a variant of a certain result of Descriptive Set
Theory, known as Novikov’s Selection Theorem, stated for example in Kechris ([K], page 220,
Theorem 28.8).

Theorem 4.1 Suppose U is a Standard Borel space and V a Polish space and B ⊆ U × V
a Borel set whose projection onto U is the whole of U , that is, ΠU (B) = U . Suppose further
that the sections Bx of B, x ∈ U , are all compact. Then there is a Borel measurable function
h : U → V whose graph is contained in B, that is, h(x) ∈ Bx ∀ x ∈ U .

From now on, an additive process will always mean an element of the class C defined earlier.

Lemma 4.1 Suppose X is a process in the class C whose distribution in C is uniquely determined
by the moment functions EXj

t , 1 ≤ j ≤ k where k > 1. Then for any version of κ, the set
T ⊆ [0,∞) defined by T = {t ≥ 0 : Card(κ(t, ·)) > k} is Borel and has zero lebesgue measure.
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Proof: Let us start with any version of κ, and construct the set T as in the statement. Towards
the first assertion, define, for each n ≥ 1 and j ∈ Z, the Borel sets

Ij,n =

{

t : κ(t, (
j

2n
,

j + 1

2n
]) > 0

}

.

For each n ≥ 1, the possibly +∞-valued function fn on [0,∞) defined as

fn(t) =

∞∑

j=−∞
1Ij,n

(t)

is measurable. Clearly, for each t, fn(t) is increasing in n, hence f = limn fn(t) exits and is
measurable also. (Observe f(t) = ∞ whenever fn(t) = ∞ for some n). Finally, we just have
to note that T = {t : f(t) > k}, which implies that T is Borel. In fact, f(t) equals exactly
Card(κ(t, ·)) in case the latter is finite. The first statement is thus established.

For the second statement, suppose if possible that ℓ(T ) > 0. Now note that the hypothesis of
the lemma implies that X has finite moments of orders at least upto k. Therefore, for each t,
∫ t
0

∫

R
|u| j κ(s, du)ds < ∞, 0 ≤ j ≤ k − 2. In particular, the set

I =

k−2⋃

j=0

{

t :

∫

|u| j κ(t, du) = +∞
}

is a Borel set of zero lebesgue measure. Set T̃ = T ∩ Ic. Then clearly, ℓ(T̃ ) = ℓ(T ) > 0. We now
apply Theorem 4.1 to produce a contradiction.

Choose for U the set T̃ , and for V , the following σ-compact Banach space:

V =

{
k∑

i=1

cigi : ci ∈ R, 1 ≤ i ≤ k

}

,

where g1, g2, . . . , gk are non-vanishing continuous functions on R → R, each bounded by 1,
with the property that for any set E ⊂ R of cardinality at least k, the functions g11E , g21E ,
. . . , gk1E are linearly independent. For f =

∑k
i=1 cigi ∈ V , define ‖f‖ = (

∑k
i=1 |ci|2)1/2 so that

V is isometrically isomorphic to Rk .

To define the set B, we introduce a definition and a notation: for t ∈ T̃ , define the linear map
Λt : V → R

k−1 as Λt(f) = (
∫

R
f(u)ujκ(t, du))0≤j≤k−2. Define now B = {(t, f) ∈ T̃ × V : Λtf =

0, 1
2 ≤ ‖f‖ ≤ 1}. To show both that B is Borel and that its sections Bt are compact in V , we

use the following

Lemma 4.2 The map (t, f) 7→ Λtf as a function on T̃ × V is measurable in the first argument
t keeping the second f fixed, and continuous in the latter fixing the former. In particular, it is
jointly measurable on T̃ × V .

The proof of this lemma involves only routine applications of standard results in measure theory
and we omit it.

Obviously, as a result, B is the intersection of two Borel sets in the product T̃ × V , therefore
Borel itself. Next, for every fixed t ∈ T̃ , Bt = {f : Λtf = 0} ∩ {f : 1

2 ≤ ‖f‖ ≤ 1}, is the
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intersection of a closed set (being the inverse image of a closed set under a continuous map) and
a compact set, hence is itself compact.

It remains to show that ΠT̃ (B) = T̃ , or equivalently, that Bt is nonempty for all t ∈ T̃ . Fix a

t ∈ T̃ . Denote the support of κ(t, ·) by St. By definition of T̃ , St contains at least k points.
Consider now the vector space Vt = {f1St : f ∈ V }. It is not difficult to show, using |St| ≥ k,
that Vt has dimension at least k.

We now define, for t ∈ T̃ , a linear map ζt : Vt → R
k−1 , as ζt(v) = Λtf where v = f1St,

f ∈ V . This map is well-defined, since if for some g ∈ V , v = g1St also, then Λtg = Λtf .
Further, ζt necessarily has a nontrivial kernel, its range being of strictly smaller dimension than
its domain. Choosing any nonzero element v = f1St in the kernel and scaling it appropriately
so that 1

2 ≤ ‖f‖ ≤ 1, we get f ∈ Bt. Thus Bt 6= ∅ ∀ t ∈ T̃ .

Applying Theorem 4.1 therefore, we get a ‘measurable selection’ h : T̃ → V such that h(t) ∈
Bt ∀ t ∈ T̃ . For t ∈ T̃ and u ∈ R, let us define h(t, u) as h(t) evaluated at u and write
h(t, u) =

∑k
i=1 ci(t)gi(u). Now, each of the maps

∑k
i=1 cigi 7→ ci, 1 ≤ i ≤ k is continuous,

therefore measurable. Thus the measurability of h implies that ∀ u ∈ R, the map t 7→ h(t, u) is
measurable. But for every t, h(t) ∈ V is known to be continuous, therefore h : T̃ × R → R is
jointly measurable.

Define now, using this function h, the new derivative measure κ and Kolmogorov measure K as

κ(t, du) = κ(t, du)1T̃ c(t) + (1 + h(t, u))κ(t, du)1T̃ (t), and

K(A) =

∫

A
κ(t, du)dt for Borel A ⊆ [0,∞) × R.

The fact that ∀ t ∈ T̃ , |h(t, u)| ≤ 1 for κ(t, ·)-a.e. u, ensures that K is a measure. This is the
Kolmogorov measure of our candidate for an additive process Y . We retain for Y the same
mean function as that of X. Then, for all s ≥ 0 and 0 ≤ j ≤ k − 2,

∫

ujK([0, s] ⊗ du) =

∫ s

0
dt

∫

ujκ(t, du)

=

∫

[0,s]∩T̃ c

dt

∫

ujκ(t, du) +

∫

[0,s]∩T̃
dt

∫

uj(1 + h(t, u))κ(t, du)

=

∫

[0,s]∩T̃ c

dt

∫

ujκ(t, du) +

∫

[0,s]∩T̃
dt

∫

ujκ(t, du)

+

∫

[0,s]∩T̃
dt

∫

ujh(t, u)κ(t, du)

=

∫ s

0
dt

∫

ujκ(t, du) (by construction of h)

=

∫

ujL([0, s] ⊗ du);

that is, Y has the same cumulants and consequently, the same moments, as X upto order k.
However, K 6= K, which can be seen as follows. First of all, since ℓ(T̃ ) > 0, there is a t0 > 0,
such that ℓ(T̃ ∩ [0, t0]) > 0. Denoting T̃0 = T̃ ∩ [0, t0], consider the Borel set H ⊆ [0, t0] × R

defined as H = {(t, u) : t ∈ T̃0, h(t, u) > 0}. Since H ⊆ [0, t0] × R, clearly K(H) < ∞. On
the other hand, since for each t ∈ T̃0, ‖h(t, ·)‖ ≥ 1/2 and

∫
h(t, u)κ(t, du) = 0, we must have

16



κ(t, {u : h(t, u) > 0}) > 0. For, if h(t, ·) ≡ 0 on St, then using the linear independence of the
gi’s, we get that ci = 0 for every 1 ≤ i ≤ k which would contradict ‖h(t, ·)‖ > 1/2. This, along
with ℓ(T̃0) > 0, implies that

K(H) = K(H) +

∫

T̃0

dt

∫

{u:h(t,u)>0}
h(t, u)κ(t, du) > K(H).

Thus Y
d
6= X, contradicting the hypothesis. �

Proof of Theorem 2.3 : The proof of part (a) is quite similar to the corresponding part in the
homogeneous case. If κ is indeed of the given form, then {Pj : 1 ≤ j ≤ 2n + 2} determines the
law of X. First of all, the two conditions imply that for all 1 ≤ j ≤ 2n + 2, the j-th cumulant
of Xt is given by

cj(t) =

∫

uj−2K([0, t] ⊗ du) =

∫ t

0

∫

uj−2κ(s, du) =

∫ t

0

n∑

i=1

pi(t){xi(t)} j−2,

a polynomial in t. This ensures that Pj(X) 6= ∅ for 1 ≤ j ≤ 2n + 2.

If now Y is another additive process of the class C such that Pj(Y ) = Pj(X) for 1 ≤ j ≤ 2n + 2,
then for every t ≥ 0, the cumulants of order upto 2n+2 of Yt agree with those of Xt. Denote the
mean function, Kolmogorov measure and derivative measure for Y by m, K and κ respectively.
Then by the relation (4.7), m(t) = c1(t) = m(t), and for all 0 ≤ j ≤ 2n and t ≥ 0,

∫ t

0

∫

u jκ(s, du) =

∫

u jK([0, t] ⊗ du) =

∫

u jK([0, t] ⊗ du) =

∫ t

0

∫

u jκ(s, du).

It follows that for almost all t ≥ 0,
∫

u jκ(t, du) =
∫

u jκ(t, du), 0 ≤ j ≤ 2n, and consequently
that

∫ n∏

j=1

(u − xj(t))
2 κ(t, du) =

∫ n∏

j=1

(u − xj(t))
2 κ(t, du) = 0.

By the same argument as in the proof of the ‘if’ part of Theorem 2.1, this proves κ(t, ·) = κ(t, ·)
for almost all t; and therefore K = K, implying Y

d
= X. Thus {Pj : 1 ≤ j ≤ 2n+2} characterises

X.

Let us now prove part (b). The hypothesis now entails the existence of a positive integer k such
that {Pj(X), 1 ≤ j ≤ k}, determines the law of X. We may thus apply Lemma 4.1. Consider
any version of κ and the set T as defined in its proof. For t ∈ T , redefine κ(t, ·) as zero measure.
The resulting transition function still remains a version of κ. Now recall, for t ≥ 0, the notation
St for the support of κ(t, ·). By our construction, |St| ≤ k ∀ t ≥ 0. Let us partition [0,∞) by
the cardinality of St, that is, let

Tj = {t ≥ 0 : |St| = j}, 1 ≤ j ≤ k.

By the same argument used to prove T (of Lemma 4.1) is Borel, one can conclude that so is
each Tj. Notice that T = (∪k

j=1Tj)
c.

For t ∈ Tj , order the elements of St as x1(t) < x2(t) < . . . < xj(t), and denote the κ(t, ·)-masses
at these points by p1(t), p2(t), . . . , pj(t) respectively.
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Also, for j + 1 ≤ i ≤ k, let xi(t) = xi−1(t) + 1 and pi(t) = 0. For t ∈ T = (∪k
j=1Tj)

c, set
xi(t) ≡ yi and pi(t) ≡ 1, 1 ≤ i ≤ k. With these notations, it follows that

κ(t, ·) =
k∑

i=1

pi(t)δxi(t).

We now need to prove that the real-valued functions xi(t), and the non-negative functions pi(t),
are all measurable. It suffices to show the measurability of these functions only on ∪k

j=1Tj. First
we deal with the xi’s. It is enough to show that each xi is measurable on each Tj , and that too,
only for i ≤ j.

Fix j ≥ 1. By the definition of support of a measure, St = supp (κ(t, ·)) is closed, and,
x1(t) = inf St for every t ∈ Tj . Therefore,

{t ∈ Tj : x1(t) ≥ a} =
⋂

q∈Q
q<a

{t ∈ Tj : κ(t, (−∞, q)) = 0} .

This means that the function x1 : Tj → R is measurable. Next, if j ≥ 2, then

{t ∈ Tj : x2(t) ≥ a}

= {t ∈ Tj : x1(t) ≥ a}
⋃

{

{t ∈ Tj : x1(t) < a} ∩ {t ∈ Tj : x2(t) ≥ a}
}

,

and the second set can be written as

{t ∈ Tj : x1(t) < a} ∩
⋂

q∈Q
q<a

{{t ∈ Tj : x1(t) ≥ q} ∪ {t ∈ Tj : κ(t, (q, a)) = 0}} .

Thus x2 is measurable on Tj . In similar fashion, it can be shown that the rest of the functions
xi(t), 1 ≤ i ≤ j, are each measurable on Tj . Now the task remains to show that the pi’s are also
measurable. But observe that










1 1 . . . 1
x1(t) x2(t) . . . xk(t)
x2

1(t) x2
2(t) . . . x2

k(t)
...

...
. . .

...

x k−1
1 (t) x k−1

2 (t) . . . x k−1
k (t)



















p1(t)
p2(t)
p3(t)

...
pk(t)










=










∫
κ(t, du)

∫
uκ(t, du)

∫
u2κ(t, du)

...
∫

u k−1κ(t, du)










The matrix D on the left is nonsingular, being a Vandermonde matrix, and since each of its
elements is a measurable function of t, so is each element of its inverse. Each element of the
vector v on the right is also measurable, by approximating the functions uj by simple functions.
It follows that the elements pi of D−1v are also measurable.

Finally, for every j, 0 ≤ j ≤ k − 2,

k∑

j=1

pi(t){xi(t)} j =

∫

uj κ(t, du) =
d

dt

∫

ujK([0, t] ⊗ du) = c′j+2(t),
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where the second equality holds for lebesgue-almost every t. The left hand side is therefore a
polynomial almost everywhere. �

The proof of Theorem 2.4 requires the following lemma whose proof we only sketch. Consider
the class P of all Borel probability measures on the real line, with the σ-field Σ := σ<eA : A ∈
B(R)> generated by the evaluation maps {eA}, defined as eA(P ) = P (A). Denote the topology
of weak convergence on P by T .

Lemma 4.3 The Borel σ-field σ(T ) on P equals Σ.

Proof : We know from Billingsley ([B2], pages 236-237) that the class

U = {{Q : Q(Fi) < P (Fi) + ǫ, 1 ≤ i ≤ n} : P ∈ P, ǫ > 0, n ≥ 1, F1, . . . , Fn ⊆ R closed}

forms a base for T . Since T is second countable, it is enough to show that every B ∈ U is in Σ
to conclude that σ(T ) ⊆ Σ. But this is trivially seen to be true.

On the other hand, that σ(T ) ⊇ Σ follows from Dynkin’s π-λ Theorem (see [B1], page 37) since
closed subsets of R form a λ-class, the class A = {A such that eA : P → [0, 1] is measurable} is
a π-class and eF is easily seen to be a measurable map on P for closed F ⊆ R. �

Proof of Theorem 2.4 : Here too, since the proof of Theorem 2.3 reveals that {Pj : 1 ≤ j ≤
2n + 2} determines the law of X in C, it is enough to show that {Pj : 1 ≤ j ≤ 2n + 1} does not.

The hypothesis of the theorem says that the set Tn := {t ≥ 0 : Card(κ(t, ·)) = n} has positive
lebesgue measure. Clearly, for t ∈ Tn, κ(t, ·) is a finite positive measure, hence it can be

normalised into a Borel probability measure p (t, ·) on the line; namely, p (t, E) = κ(t,E)
κ(t,R) ,

E ∈ B(R). Further, for every Borel E, the map p (·, E) : Tn → [0, 1] is Borel measurable, by
the similar property enjoyed by κ. This implies, by Lemma 4.3, that the map p : Tn → P is a
Borel measurable map. Moreover, p is actually a measurable map from Tn into Pn. That Pn is
a Borel subset of P is guaranteed by Lemma 4.3 again, along the same lines as the proof of the
measurability of the set T in the proof of Lemma 4.1.

Now, for t ∈ Tn, we replace κ(t, ·) by a different derivative measure while retaining measurability
in the sense described before, to obtain a new additive process. First, for the measure p (t, ·) con-
struct the n×n symmetric tridiagonal matrix A as in Lemma 3.2, and call it A(t). Corresponding
to this matrix, choose the symmetric tridiagonal matrix B of order (n + 1) × (n + 1) as in the
Remark 3.1, and call it B(t) . Clearly, our objective will be achieved if we can show that the re-
sulting probability measure µB(t) satisfies the condition of measurability in t, in the sense already
described. Consider now the composition of the maps p (t, ·) 7→ A(t) 7→ B(t) 7→ p (t, ·) := µB(t)

on Pn → Pn+1. The first and the last are continuous by Lemma 3.4, while the middle one is
so by Remark 3.2. Therefore the composition is itself continuous; hence Borel measurable. By
Lemma 4.3, it follows that for each E ∈ B(R), t 7→ p (t, E) is a measurable function Tn → [0, 1].
This implies that the new transition measure κ defined as

κ(t, E) := κ(t,R) p (t, E)

is a valid derivative measure. Define now a new additive process Y as before with this new
derivative measure κ. It follows that Pk(Y ) = Pk(X) for 1 ≤ k ≤ 2n + 1. That Y has a distinct
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Kolmogorov measure from X so that Y
d
6= X is an easy consequence of the fact that (B)R is

countably generated and is left to the reader. �

Remark. Given the form of the derivative measure, it is natural to speculate what can be said
about the exact nature of the functions xi and pi, 1 ≤ i ≤ k. We exhibit some possible forms in
the case n = 2 in the section devoted to examples.

5 Examples

The following are some examples of additive processes, a few of which are fpd and some which
are not. The first three types are in the general setup. More non-homogeneous examples can
easily be constructed by minor modifications.

• 2-polynomially determined processes. The only 2-polynomially determined additive
processes are those which are deterministic, that is, processes X for which Xt equals with
probability 1 a polynomial P (t) with P (0) = 0. Clearly, then, β(t) = m(t) = P (t),
σ2(t) ≡ 0 and L = K = 0. The two time-space harmonic polynomials characterising such
a process are P1(t, x) = x − P (t) and P2(t, x) = (x − P (t)) 2.

• 4-polynomially determined processes. Such processes are clearly determined by three
functions m, p and x on [0,∞) with m(0) = 0 and p ≥ 0 such that m(t), p (t), x(t)p (t)
and x2(t)p (t) are polynomials, where m stands for the mean function, and a version of
the derivative measure is given by p (t)δx(t).

• 6-polynomially determined processes. For these, clearly, the value of n as in Theo-
rem 2.4 is 2. Thus, such processes are determined by an arbitrary polynomial m(·) with
m(0) = 0 as mean function, and the functions x1, x2, p1 and p2. Some possible forms for
these functions are

1. x1(t), x2(t), p1(t) ≥ 0 and p2(t) ≥ 0 are polynomials,

2. x1(t) = a(t) +
√

b(t), x2(t) = a(t) −
√

b(t), p1(t) = c(t) + d(t)
√

b(t) and p2(t) =
c(t)− d(t)

√

b(t), where a, b, c and d are polynomials so chosen that c± d
√

b are both
non-negative on [0,∞).

3. x1(t) = a(t)b(t), x2(t) = c(t)b(t), p1(t) = d(t)
b(t) , and p2(t) = e(t)

b(t) . Here, a, b > 0, c,

d ≥ 0 and e ≥ 0 are polynomials such that b|(d + e).

Although in each of these examples, the underlying process admits time-space harmonic
polynomials of each degree in the space variable, that is, Pk 6= ∅ ∀ k ≥ 1, one can easily
obtain examples of fpd additive processes for which this property is violated. That is,
there are additive processes for which only finitely many Pk’s are non-empty and serve to
determine its law ([S1], page 78).

• Standard Brownian motion. For Brownian motion, it is well-known that the Lévy
measure m(du) ≡ 0, and hence the Kolmogorov measure is η = δ0. Thus the first four
Hermite polynomials

H1(t, x) = x, H2(t, x) = x2 − t,
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H3(t, x) = x3 − 3tx, H4(t, x) = x4 − 6tx2 + 4t2,

determine it uniquely among Lévy processes. An example of another Lévy process for
which the first three time-space harmonic polynomials agree, is specified by the following:

m = 0 and η =
1

2
(δ−1 + δ1).

We may note here that Brownian motion with a constant drift is also 4-polynomially
determined.

• Poisson Process. In this case, m = λ and η = λδ1. Here too, the first four Poisson-
Charlier polynomials

C1(t, x) = x − λt, C2(t, x) = (x − λt)2 − λt,

C3(t, x) = (x − λt)3 − 3λt(x − λt) − λt,

C4(t, x) = (x − λt)4 − 6λt(x − λt)2 − 4λt(x − λt) + 3(λt)2 − λt,

determine it. Another Lévy process with the first three matching is given by

m = λ and η =
λ

2
(δ0 + δ2).

• Gamma Process. This is a counterexample in contrast to the earlier two. Here m = α/λ
and

η(du) = α u e−λudu, u ≥ 0

which is clearly not finitely supported. Therefore the Gamma process is not fpd.

• Finally, we present an example of a Lévy process which is not even infinitely polyno-
mially determined, leave alone being fpd. Take m = 0 and as η, any measure that is not
determined by its moments, as for instance that in Feller ([F], page 224)

η(du) = e
4
√

u(1 − α sin 4
√

u) du, u ≥ 0, for some 0 < α < 1.

Obviously, since this η is not finitely supported, the underlying process has no chance of
being fpd. The non-existence of the m.g.f. makes this construction possible.
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