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A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form,

applies to closed systems as well. The idea originates from the description of classical enzyme

kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating

the network not only deterministically but also stochastically. The latter accounts for any significant

amount of noise that can be present in biological systems and hence reveals its impact on efficiency.

Numerical verification of the results is also performed. It is found that the deterministic equation

overestimates the efficiency, the more so for very small system sizes. Roles of various kinetics

parameters and system sizes on the efficiency are thoroughly explored and compared with the standard

definition k2/KM. Study of substrate fluctuation also indicates an interesting efficiency-accuracy

balance. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937792]

I. INTRODUCTION

Enzymes are natural catalysts of immense importance

regulating numerous biological and physiological processes.1,2

Their actions and mechanisms were thus explored in detail

over the years, with studies ranging over various time scales

as well as length scales.3–8 In characterizing the enzyme

kinetics, the Michaelis-Menten (MM) equation1 stands as the

benchmark for bulk in vitro experiments. It provides a ready

estimation of key rate parameters. The data from modern

single-molecule experiments are also compared and contrasted

against the MM model, with the variables suitably modified.7,9

However, recent theoretical studies indicate that in presence

of noise, the MM equation can fail to accurately predict the

rate of the reaction.10,11 The quasi-steady-state approximation

that lies at the core of the MM equation often breaks down

in small systems with low copy number of reacting species12

and also in open systems.13 The latter observation is very

important as it represents many naturally occurring systems

associated with flow. In this work, therefore, we shall focus

mainly on the enzyme kinetics in an open system framework.

The MM scheme for single enzyme-single substrate

reaction is written as

E + S
k′

1
−−−−⇀↽−−−−

k−1

C
k2
−−−→ E + P. (1)

The enzyme-substrate complex is denoted by C. A widely

used measure of enzyme efficiency in converting the substrate

into product is the k2/KM (or more generally kcat/KM) ratio.1,2

This is because these parameters are the ones that are readily

obtained from experiments, e.g., KM = (k−1 + k2)/k ′
1
, called

the MM constant.

In a closed reaction volume (batch reactor), however,

the system reaches equilibrium with complete conversion

of substrate into product and full recovery of the enzyme.

a)Current address: Center for Theoretical Biological Physics, Rice University,
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While this is true for any enzyme following MM scheme (1),

the time required for this conversion seems to be a logical

candidate in discussions on the “efficiency” of a specific

enzyme. In this context, we may mention some recent works

that address the enzyme kinetics problem from the standpoint

of cycle-time.14–16 The attention has thus been shifted from

rate, though the original concept had been developed much

earlier.17 Assuming that the substrate is in large excess, the

average duration of each cycle τc and the total average number

of cycles required for the complete course of the reaction n̄c

have been shown to have the forms16

τc =
KM + [S]0

k ′
1
KM[S]0

, n̄c =
(k−1 + k2)[S]0

k2[E]0
. (2)

Here, [S]0 and [E]0 are the initial substrate and enzyme

concentrations, respectively. Same results can also be derived

by assuming chemiostatic conditions where the substrate

number is kept fixed by some suitable mechanism.

One can immediately see that the product of the two

quantities given in Eq. (2) provides an estimate of the reaction

completion time in a closed system. Hence, we define the

efficiency ζ as its inverse, i.e.,

ζ = (n̄cτc)
−1 =

k2[E]0

KM + [S]0
. (3)

Along with the rate parameters, ζ explicitly contains the

(initial) concentration terms. Eq. (3) is similar in structure to

the turnover rate (per enzyme), with ζ having the dimension

of rate. The only difference is that [S]0 also appears in the

numerator of turnover rate. It follows desirably from Eq.

(3) that for a fixed set of rate parameters and [E]0, higher

[S]0 requires a longer time for full conversion into product,

resulting in lower ζ . The proportionality of ζ to [E]0 can be

similarly explained.

With this background, we now ask the following

questions: (i) How can the enzyme efficiency be defined

in a biological reaction system with flow that is consistent

with Eq. (3)? (ii) What is the role of stochasticity or noise
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in such an open system? We shall address both the issues

in what follows. In Sec. II, an open reaction network is

analytically studied using both deterministic rate equation

(DRE) and chemical master equation (CME) techniques. The

steady-state (SS) results are compared to understand the effect

of noise for different system sizes. We clarify that in our work,

the SS refers to a situation out-of-equilibrium with non-zero

stationary fluxes18 and time-independent populations of all

the species. This is unlike some other prevalent works where

the product is kept out of the SS condition. This means, even

in the SS, there is a non-zero product formation rate.10,11 In

Sec. III, we analyze the effects of various kinetic parameters

and system sizes on the efficiency numerically. The paper is

concluded in Sec. IV.

II. OPEN REACTION NETWORK

We consider an open network where the substrate is

injected at a constant rate (of flow) γs and the product

flows out of the system with a first-order rate constant kp.

The enzyme is present within the system from the onset of

reaction with some initial population. The situation is shown

schematically as13

∅
γs
−→ S + E

k′
1

−−−−⇀↽−−−−
k−1

C
k2
−→ E + P

kp

−→ ∅. (4)

Under suitable conditions, the reaction system reaches SS as

described below. One may consider the scheme in (4) as a part

of a larger (say, a metabolic) network.

A. Deterministic description

Using the DREs for network (4) (given in Appendix A),

one obtains the SS concentrations as

[S] =
γsKM

k2[E]0 − γs
, [C] =

[E]0[S]

KM + [S]
,

[E] = [E]0 − [C], [P] =
k2[C]

kp

=
γs

kp

.

(5)

Thus, to achieve the SS, one needs k2[E]0 > γs.

Now, a general definition of efficiency must be formulated

as a ratio of output to input. For the open system under study,

the (deterministic) efficiency at any instant can be expressed as

the ratio of product formation rate, or equivalently the outflow

rate, and the substrate concentration inside the reaction volume

as follows:

(ζ)det(t) =
kp[P](t)

[S](t)
. (6)

The utility of such a definition is that, at SS, from Eq. (5), we

get

(ζ)det =
k2[E]0

KM + [S]
. (7)

Interestingly, this is the same as Eq. (3), obtained from the

cycle description of MM kinetics in closed system, except for

the crucial fact that here, the substrate concentration at SS is

required rather than [S]0. Putting the expression of [S] from

Eq. (5) into Eq. (7), one gets

(ζ)det =
k2[E]0 − γs

KM

, (8)

revealing explicitly the effect of γs, the inflow rate. For

γs = 0, it follows from Eq. (8) that the efficiency (scaled by

[E]0) reduces to the standard measure of k2/KM for closed

systems.

B. Stochastic description

Here, we study the case of a single enzyme molecule. The

CME with substrate inflow and product outflow is constructed

separately for the two possible states of the single enzyme

molecule as10,11

∂tΠ0(N,P, t) = −k1NΠ0(N,P, t) + k−1Π1(N − 1,P, t)

+ k2Π1(N,P − 1, t) + ksΠ0(N − 1,P, t)

− ksΠ0(N,P, t) + kp(P + 1)Π0(N,P + 1, t)

− kpPΠ0(N,P, t) (9)

and

∂tΠ1(N,P, t) = k1(N + 1)Π0(N + 1,P, t) − k−1Π1(N,P, t)

− k2Π1(N,P, t) + ksΠ1(N − 1,P, t)

− ksΠ1(N,P, t) + kp(P + 1)Π1(N,P + 1, t)

− kpPΠ1(N,P, t). (10)

In Eqs. (9) and (10), Π j(N,P, t) ( j = 0,1) denotes the

probability to realize the state of the system with N substrate

molecules, P product molecules, and the enzyme in the free

( j = 0) or in the bound ( j = 1) state, at time t. The mesoscopic

rate constants are related to the corresponding macroscopic

ones by k1 = k ′
1
/Ω and ks = γsΩ, Ω being the volume of the

reaction compartment.

The rate of the reaction v , quantified in terms of the rate

of (mean) product formation, is given by

v =
d⟨P⟩

dt
=

d

dt



N,P

P(Π0(N,P, t) + Π1(N,P, t))

= k2



N,P

Π1(N,P, t) − kp⟨P⟩. (11)

At SS, we set v = 0. Here, we depart from the previous

works.10,11 Following Eq. (6), the (stochastic) efficiency at SS

should be naturally expressed as

(ζ)sto =
kp⟨P⟩

⟨N⟩
. (12)

So, the mean substrate and product populations are needed to

evaluate ζ . To this end, we choose the approach of Stefanini

et al.10 to define

Q j(N, t) ≡


P

Π j(N,P, t), η
( j)
q ≡



N

NqQ j(N, t). (13)

Using Eqs. (9) and (10) and the first expression of Eq. (13),

one can hence write down the evolution equations of Q0 and

Q1. Then, setting those equations to zero, one obtains the
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following two sets of algebraic equations at SS:

(k1N + ks)Q0(N) = k−1Q1(N − 1) + k2Q1(N) + ksQ0(N − 1),

(14)

k1(N + 1)Q0(N + 1) + ksQ1(N − 1) = (k−1 + k2 + ks)Q1(N).

(15)

Summing over “N ,” we get from Eqs.(14) and (15),

η
(0)

1
= K ′Mη

(1)

0
, (16)

where K ′
M
=

k−1+k2

k1
= KMΩ. Multiplying Eq. (14) by “N” and

then summing over “N” give

η
(0)

2
= K ′Mη

(1)

1
+

k−1

k1

η
(1)

0
+

ks

k1

η
(0)

0
. (17)

A similar procedure yields from Eq. (15),

η
(0)

2
= K ′Mη

(1)

1
+ η

(0)

1
−

ks

k1

η
(1)

0
. (18)

At SS, it follows from Eqs. (11), (13), (17), and (18) that

k2η
(1)

0
= ks = kp⟨P⟩. (19)

Eq. (19) actually gives the flux-balance at SS and confirms

the validity of the analytical treatment.

Now, multiplying Eqs. (14) and (15) by “N2,” summing

over “N ,” and then eliminating η
(0)

3
, we get (for details, see

Appendix B)

2k1η
(0)

2
= ks + 2ks⟨N⟩ + k1η

(0)

1
+ k−1η

(1)

0
+ 2k−1η

(1)

1
, (20)

where ⟨N⟩ = η
(0)

1
+ η

(1)

1
and η

(0)

0
+ η

(1)

0
= 1 give the normal-

ization. Eliminating η
(0)

2
between Eqs. (17) and (20), one

gets

η
(1)

0
=

ks + 2⟨N⟩(k2 − ks)

k2 + 2(ks + k2K ′
M
)
. (21)

Next, eliminating η
(1)

0
between Eqs. (19) and (21), we finally

have

⟨N⟩ =
ks(ks + k2K ′

M
)

k2(k2 − ks)
. (22)

Eq. (22) can also be expressed as

⟨N⟩

Ω
=

γs(γs + k2KM)

k2(k2Ω−1 − γs)
. (23)

For k2KM ≫ γs, Eq. (23) reduces to the deterministic form

(see Eq. (5))

(⟨N⟩/Ω)det ≡ [S] =
γsKM

(k2[E]0 − γs)
, (24)

where, for the single enzyme molecule, [E]0 = Ω
−1. Then,

from Eqs. (23) and (24), we can determine the deviation due

to noise as

(⟨N⟩/Ω)

[S]
≡ ∆ = 1 +

γs

k2KM

= 1 +
ks

k2K ′
M

. (25)

According to Eq. (23), SS is attained for k2Ω
−1 > γs (see

Eq. (5)). Let us choose k2 = αγsΩ (α > 1). Then, Eq. (25)

becomes

∆ = 1 +
1

αKMΩ
. (26)

So, for fixed rate parameters (and fixed α), the deviation due

to noise increases for smaller reaction volume and vanishes

in the Ω→ ∞ limit, as expected. For a given Ω, on the other

hand, the lower be the value of KM and/or α, higher will be

the deviation.

It is easy to see from Eqs. (12), (19), and (22) that

(ζ)det

(ζ)sto

= ∆ (27)

with

(ζ)sto =
k2(k2 − ks)

ks + k2K ′
M

, (ζ)det =
k2 − ks

K ′
M

=
k2[E]0 − γs

KM

. (28)

For a particular enzyme-substrate pair with a given Ω and ks,

it is therefore evident from Eq. (28) that

k2/K ′M > (ζ)det > (ζ)sto. (29)

Thus, Eq. (25) and Eq. (27) show that the deterministic

equations underestimate the mean substrate population and

overestimate the efficiency. The mean product population

remains the same in either the presence or the absence of

noise, i.e., ⟨P⟩/Ω = γs/kp = [P].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we will numerically analyze how the

system size and various rate parameters affect the disparity (∆)

between deterministic and stochastic results. The fluctuation

of substrate population is quantified in terms of the coefficient

of variation, CV = (⟨N2⟩ − ⟨N⟩2)1/2/⟨N⟩. The derivation of

the second moment of “N” is given in Appendix C. In all

the cases, mesoscopic rate constants are used with the “mole”

unit converted into numbers. The enzyme kinetics parameters

are taken over appropriate ranges, following a recent study on

enzyme efficiency.19

A. The role of inflow rate and system volume

Equation (22) suggests that ⟨N⟩ will rise sharply with

increase in ks. Thus, efficiency will decrease with ks. This is

shown in Fig. 1 for both stochastic and deterministic cases,

along with the standard measure k2/K ′
M

(in mesoscopic form).

They approach each other as ks → 0, as already mentioned.

Other parameters are kept fixed at k ′
1
= 108 M−1s−1,

k−1 = 1 s−1, k2 = 10 s−1 that give KM = 0.11 µM. We have also

checked that for KM ≈ 100 µM, the median value obtained

from a large data set of enzyme parameters,19 the effect of

noise is significant only for Ω ≤ 10−18 L. This is in line with

earlier findings.8

The deviations ∆ are plotted in Fig. 2(a) as a function of

ks for three different system volumes Ω with KM = 0.11 µM.

For a given Ω and rate constants, ∆ increases linearly with

ks as expected from Eq. (25) and rises with reduction of Ω.

The corresponding CVs of substrate population are shown in

Fig. 2(b). The CVs are higher for lower Ω and at a given Ω

value falls with ks as ⟨N⟩ rises. It is interesting to note that

for a fixed system size, a higher ∆ does not necessarily mean

a higher CV. Actually, the opposite is true for the cases shown

in Fig. 2. We also perform simulations, using the standard
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FIG. 1. Variation of efficiency as a function of ks for stochastic and deter-

ministic cases with Ω= 10−17 L and KM= 0.11 µM. The standard measure

(in mesoscopic form) k2/K
′

M
is compared with these estimates.

stochastic simulation algorithm (SSA),20,21 to test the sanity

of our analytical results. The initial condition is chosen as

follows: N = 0, NE = 1, NC = 0, and P = 0, where NE and

NC denote the number of enzyme and complex, respectively.

The number of runs is set to 50 000 and code is written in

FORTRAN. Some representative cases are depicted in Fig. 3.

The results obtained from simulation are found to approach

the corresponding steady-state analytical results nicely.

B. The role of rate constants k1, k2, k−1

It follows from Eqs. (22) and (25) that ⟨N⟩ falls off in

a hyperbolic manner and ∆ rises linearly with increase in k1,

respectively. So, the CV is expected to rise to a saturation

with k1. These are shown to be the cases in Fig. 4 for

k−1 = 100 s−1, k2 = 10 s−1, Ω = 10−17 L, and ks = 6 s−1.

The efficiency estimates, on the contrary, need a closer look.

Equation (28) predicts a linear rise of (ζ)det as a function of

FIG. 2. (a) The deviation ∆ and (b) the CV as a function of ks for three

different system volumes with KM= 0.11 µM.

FIG. 3. Variation of (a) ⟨N ⟩ and (b) the CV as a function of time for

Ω= 10−17 L and KM= 0.11 µM. The results obtained from simulation are

seen to nicely approach the corresponding steady-state analytical results.

k1, whereas (ζ)sto is expected to grow to a saturation. These

analytical findings tally with the plots shown in Fig. 4(b).

Next, the effect of k2 on various properties is depicted

in Fig. 5 with k ′
1
= 109 M−1s−1, k−1 = 100 s−1, Ω = 10−17 L,

and ks = 6 s−1. An increase in k2 results in higher K ′
M

and

lower ∆ (see Eq. (25)). For the given set of parameters, ⟨N⟩

falls, and hence, efficiency and CV rise with k2, similar to the

trend observed in the case of k1 variation. However, all the

efficiency estimates tend to merge at high k2, which is easy to

follow from Eq. (28).

Finally, Eqs. (22) and (24) show that ⟨N⟩ grows linearly

in both stochastic and deterministic cases and ∆ decreases in

a hyperbolic fashion with k−1 (see Eq. (28)). Also, the CV

and all the efficiency measures diminish as k−1 increases (not

shown in figures).

It can be clearly seen from the figures and discussions so

far that (i) (ζ)sto shows a qualitatively similar trend of variation

as that of CV, and (ii) a higher (ζ)sto value is associated with

a higher CV. Thus, a more efficient enzyme causes a greater

FIG. 4. Variation of (a) ⟨N ⟩ and (b) different efficiency estimates along with

(c) ∆ and (d) CV, all as functions of k1 with Ω= 10−17 L.
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FIG. 5. Variation of (a) ⟨N ⟩ and (b) different efficiency estimates along with

(c) ∆ and (d) CV, all as functions of k2 with Ω= 10−17 L.

amount of fluctuation. Also, due to the overestimation by

deterministic equations, an enzyme that is considered highly

efficient via some in vitro experiment may turn out to be only

moderately efficient under in vivo environments.

In the context of the above discussion on relative

magnitudes of the various efficiency estimates, let us now

probe the matter more deeply. An important question to ask

now is as follows: does a higher k2/K ′
M

necessarily mean a

higher (ζ)det or (ζ)sto? While comparing two arbitrary cases

with different k2/K ′
M

with, say, the corresponding (ζ)det, one

must keep bothΩ and ks (< k2) fixed. Then, α, or equivalently

k2, and/or KM can be varied independently. It is easy to

show from Eq. (28) that if a higher k2/KM results from the

combinations of (a) higher k2, higher KM or (b) higher k2,

lower KM, then the system with higher k2/KM will have higher

(ζ)det as well as higher (ζ)sto, but always maintaining the

inequality (ζ)sto < (ζ)det.

However, if the higher k2/KM is generated from both a

lower k2 and lower KM, then it may so happen that the higher

k2/KM case is associated with a lower (ζ)det (and (ζ)sto). It is

particularly so if k2 itself is low and ks (<k2) is necessarily

fixed at a still lower value. We show such a case here in

Fig. 6. The curves of different efficiency measures in Fig.

6 are generated by varying k2 and KM independently and

not just as a function of k2 only. The idea is to represent

various arbitrary enzyme-substrate systems. Both k2 and KM

are changed independently which should also become clear

from the fact that a decrease in k2 only results in the lowering of

k2/KM. By zooming in the low k2 zone, as shown in Fig. 6(b),

one finds that Eq. (29) remains valid. So, enzyme-substrate

pairs with a low k2 and still lower KM, placed in a high k2/KM

region,19 will be displaced at the low range of (ζ)det. This

may cause a difference between the shapes of the distributions

of (ζ)det and k2/KM. However, there are several limitations

to compare our results with those existing in the literature.

Some of these are as follows: (i) most of the available data are

from standard in vitro laboratory experiments. These kinetic

parameters may differ considerably when the same reaction is

studied in vivo only where the effect of Ω is significant. (ii)

To experimentally test the role of Ω on the efficiency, data

FIG. 6. Evolution of different efficiency measures when both k2 and KM

are varied independently such that lowering of k2 and KM results in higher

k2/KM. We set Ω= 10−17 L and ks = 6 s−1.

from small-volume flow reactors are needed. Nonetheless, we

believe that with more experimental data becoming available

in future for small flow reactor systems, such comparisons

will become more exciting.

C. The case of multiple enzyme molecules

So far in this paper, we have considered a single enzyme

molecule to study the behavior of the efficiency estimate given

in Eq. (12). In a realistic situation, e.g., inside a cell, more than

a single enzyme molecule is present. Some recent works focus

on such open reaction systems with many enzyme molecules

by employing various theoretical tools and approximations as

well as numerical simulation.8,11,22 In this section, we treat

scenarios starting with multiple enzyme molecules exactly

by using the SSA. As already derived for a single enzyme

molecule in Eq. (23), ⟨N⟩/Ω contains the initial enzyme

concentration in the form of 1/Ω. So, by logical extrapolation

of Eq. (22), for a starting enzyme population of NE0, we

propose the mean substrate population at SS as

⟨N⟩ =
ks(ks + k2K ′

M
)

k2(k2NE0 − ks)
. (30)

It is easy to follow that in the same limit of k2KM ≫ γs (see

Eq. (23)), Eq. (30) reduces to the deterministic form with

[E]0 = NE0Ω
−1. Now, for multiple enzyme molecules, it may

be useful to scale the efficiency by NE0. Then, one obtains

from Eqs. (12) and (30)

(ζ)sto

NE0

=
k2(k2 − ksN−1

E0
)

(ks + k2K ′
M
)

. (31)

According to Eq. (31), the scaled (stochastic) efficiency

increases with the number of starting enzyme molecules and

ultimately saturates at the value k2
2
/(ks + k2K ′

M
) for very large

NE0. Also, for k2 ≫ ks, the efficiency per enzyme becomes

independent of NE0 even for finite NE0.
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FIG. 7. Variation of (a) (ζ)sto/NE0 and (b) ⟨N ⟩ as a function of time for

Ω= 10−17 L, KM= 0.11 µM, and ks = 0.06 s−1. The results obtained from

SSA are found to approach the corresponding steady-state analytical results,

obtained from Eqs. (30) and (31), nicely.

We show the numerical results for the scaled efficiency

and mean substrate population in Figs. 7(a) and 7(b),

respectively, for NE0 = 5 and NE0 = 10, along with NE0 = 1.

Other parameters are Ω = 10−17 L, KM = 0.11 µ M, k2

= 10 s−1, and ks = 0.06 s−1. The scaled efficiency values are

almost identical for different NE0, as already discussed above

for the given choice of parameters. Comparison of the

numerical data with those obtained from Eq. (30) reveals

that the latter can be useful to represent the mean SS substrate

population in the multi-enzyme case. The relatively large

spread of (ζ)sto for NE0 = 10 arises out of the very low ⟨N⟩.

We mention that Eq. (30) predicts the deviation ∆ to be

independent of the initial enzyme population. This feature can

be used to test the validity of Eq. (30).

IV. CONCLUSION

In summary, we have proposed here a new measure of

enzyme efficiency that can be applied to closed as well as

open reaction systems. In closed systems, this efficiency is

related to the completion time of the reaction, defined in

terms of the cycle description of the kinetics with substrate

in excess. It is shown that a similar expression has emerged

in the case of a system with flow at SS. Importantly, the

definition of efficiency, Eq. (12) (or Eq. (6)), is applicable

to any flow system with arbitrarily complex reaction network

where a single species is injected from outside and another

single species comes out of the reaction medium.

It is known that biological systems are not only open but

also subjected to significant noise. Therefore, we have felt

it mandatory to analyze the efficiency and related properties

in both deterministic and stochastic scenarios. Significant

differences are observed between the ensuing results that

establish the strong role of noise in such systems. The

reliability of our analytical results is verified with numerical

data generated from stochastic simulations. The effects of

inflow rate, the system volume, and various rate constants

are thoroughly studied in this context, including the case of

multiple enzyme molecules. Our efficiency estimate is also

compared with the age-old measure k2/KM and is found

to merge with the latter under suitable limiting conditions.

We have further shown that higher efficiency is linked with

greater fluctuation, indicating a trade-off between efficiency

and accuracy.

Finally, our approach has also established that both the

k2/KM ratio and the deterministic results overestimate the

efficiency compared to its stochastic assessment. Therefore,

the present endeavor provides a clue to the understanding of

why some enzyme showing high efficacy in bulk laboratory

experiments can become considerably less efficient inside

a cell or a sub-cellular compartment. Experiments in open

in vitro and in vivo systems, e.g., in small-volume flow

reactors, with controlled inflow and outflow rates of reacting

species can be performed to test the validity of these

results. However, maintaining a (non-equilibrium) steady

state in a small reaction-volume flow reactor, e.g., a cell,

can be quite a non-trivial task. We sincerely hope that

such experiments may unveil more fascinating features in

future.
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APPENDIX A: DREs FOR OPEN
REACTION NETWORK (4)

dt[S] = γs − k ′1[E][S] + k−1[C], (A1)

dt[E] = −dt[C] = −k ′1[E][S] + (k−1 + k2)[C], (A2)

dt[P] = k2[C] − kp[P]. (A3)

The SS concentrations are determined by setting the l.h.s. of

all the rate equations equal to zero.

APPENDIX B: DERIVATION OF EQ. (20)

Multiplying Eq. (14) by “N2” and then summing over

“N” give

k1η
(0)

3
= (k−1 + k2)η

(1)

2
+ 2k−1η

(1)

1
+ k−1η

(1)

0
+ 2ksη

(0)

1
+ ksη

(0)

0
.

(B1)

Similar treatment with Eq. (15) yields

k1η
(0)

3
= (k−1 + k2)η

(1)

2
+ 2k1η

(0)

2
− k1η

(0)

1
− 2ksη

(1)

1
− ksη

(1)

0
.

(B2)

Equating the r.h.s. of Eqs. (B1) and (B2), we get the desired

expression given in Eq. (20).
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APPENDIX C: DETERMINATION OF ⟨N2⟩

Multiplying Eq. (14) by “N3” and then summing over

“N” give

k1η
(0)

4
= k−1(η

(1)

3
+ 3η

(1)

2
+ 3η

(1)

1
+ η

(1)

0
)

+ ks(3η
(0)

2
+ 3η

(0)

1
+ η

(0)

0
) + k2η

(1)

3
. (C1)

Similar treatment with Eq. (15) yields

k1η
(0)

4
= k1(3η

(0)

3
− 3η

(0)

2
+ η

(0)

1
) + (k−1 + k2)η

(1)

3

− ks(3η
(1)

2
+ 3η

(1)

1
+ η

(1)

0
). (C2)

From Eqs. (C1) and (C2), one obtains

k1η
(0)

3
= ks

(

⟨N2⟩ + ⟨N⟩ +
1

3

)

+ k−1

(

η
(1)

2
+ η

(1)

1
+
η
(1)

0

3

)

+ η
(0)

2
−
η
(0)

1

3
, (C3)

where we have used ⟨N2⟩ = η
(0)

2
+ η

(1)

2
, ⟨N⟩ = η

(0)

1
+ η

(1)

1
, and

η
(0)

0
+ η

(1)

0
= 1. Using Eqs. (B1) and (C3), we finally get

(k2 − ks)⟨N
2⟩ = ks

(

⟨N⟩ +
1

3

)

+ (k1 + k2)η
(0)

2

−
(

2ks +
k1

3

)

η
(0)

1
− k−1η

(1)

1

−
2k−1

3
η
(1)

0
− ksη

(0)

0
. (C4)

All the quantities in the r.h.s. of Eq. (C4) are already

determined at SS. For example, η
(1)

0
= ks/k2 (from Eq. (19)),

η
(0)

1
= K ′

M
η
(1)

0
(from Eq. (16)), η

(1)

1
= ⟨N⟩ − η

(0)

1
, where ⟨N⟩ is

given in Eq. (22). Then, using Eq. (17) and η
(0)

0
= 1 − η

(1)

0
,

η
(0)

2
can also be evaluated. Thus, we can determine ⟨N2⟩ and

subsequently the CV.
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