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The effects of ion-neutral collision on the electrostatic wave packets in the absence of the magnetic

field in a pair-ion plasma have been investigated. Considering a two-fluid plasma model with the

help of the standard perturbation technique, two distinct electrostatic modes have been observed,

namely, a low-frequency ion acoustic mode and a high-frequency ion plasma mode. The dynamics

of the modulated wave is governed by a damped nonlinear Schr€odinger equation. Damping of the

soliton occurs due to the ion-neutral collision. The analytical and numerical investigation reveals

that the ion acoustic mode is both stable and unstable, which propagates in the form of dark solitons

and bright solitons, respectively, whereas the ion plasma mode is unstable, propagating in the form

of a bright soliton. Results are discussed in the context of the fullerene pair-ion plasma experi-

ments. Published by AIP Publishing. https://doi.org/10.1063/1.4997224

I. INTRODUCTION

Pair plasmas consisting of positive and negative ions

(without electrons) with equal masses have been studied

intensively in the last few decades in theory1–7 and in experi-

ments.8–11 The physics of pair plasmas is completely differ-

ent from that of the normal electron ion plasmas. Pair

plasmas are benefited by the space time symmetry in contrast

to the normal electron ion plasmas with a wide mass differ-

ence. The symmetry arises due to the same mobility of the

charged particles in electromagnetic fields. As a result, varie-

ties of new physical phenomena have been studied in such

symmetric pair plasmas. Pair plasmas consisting of electrons

and positrons exist in the pulsar magnetosphere, early uni-

verse, active galaxy,12–15 and inertial confinement fusion

reactor using ultraintense lasers.16 Although pair plasmas

consisting of electrons and positrons can be produced experi-

mentally, it is very difficult to identify the collective modes

because of the annihilation time, which is short in compari-

son to the plasma period.17

However, in pair-ion plasmas composed of positive and

negative ions, larger time scale can be considered. Therefore,

no need to worry about the annihilation time in pair-ion plas-

mas. Such pair ion plasmas have been produced experimen-

tally18 by using positive and negative fullerene ions ðC660Þ as
the ion source. These fullerene ions maintain a typical geo-

metric arrangement containing 60 carbon atoms. This experi-

mental result allows us to analyze new collective modes in

pair-ion plasmas in a controlled situation. There is a huge

prospect of usefulness of such types of pair-ion plasmas in

nanotechnology and for the synthesis of dimers directly from

carbon allotropes.19

In experiments, three types of electrostatic collective

modes were observed in such pair ion plasmas:20–23 (a) low-

frequency ion acoustic wave (IAW), (b) high-frequency ion

plasma wave (IPW), and (c) intermediate-frequency wave

(IFW). The frequency of IFW lies between the frequency of

IAW and IPW. Theoretical studies of linear electrostatic and

electromagnetic modes in pair plasmas have been carried out

taking the kinetic24 or the fluid dynamical model.25–27 In ful-

lerene pair-ion plasmas, when negative C�
60 ions collide with

positive Cþ
60 ions and/or neutral fullerene, dimers C60, C120,

and C121 may be produced as a collisional product.28,29

These dimers have acquired an interest from the standpoint

of applications to nanoscale magnetic materials,30 nanotech-

nology, and fusion plasmas.29

Recently, the effects of collisions with neutrals on propa-

gation dynamics of linear electrostatic modes in pair-ion plas-

mas have been extensively investigated in the presence of a

uniform external magnetic field.27 In such a system, nonline-

arity acts into play when wave amplitude becomes large.

An intrinsic character of the nonlinear wave is the self-

interactions. These self-interactions introduce self-focusing

effects (modulational instability). In the absence of collisions,

the wave modulation characteristics of electrostatic modes

have already been investigated in pair-ion plasmas.4,31 These

investigations motivate us to investigate the nonlinear elec-

trostatic wave modulations in one-spatial dimension in a pair-

ion plasma in the presence of ion-neutral collision.

To study the nonlinear propagation of electrostatic modes,

we have taken the two fluid equations to describe the model

for two ion species and employed the standard reductive

perturbation technique (RPT). Two distinct modes are derived

the same as the experimental observation, namely, ion acous-

tic wave x2
1 ¼ C2

sk
2 (here, x1; k, and Cs denote the frequency,

wave number, and ion acoustic speed, respectively) and a ion

plasma wave x2
2 ¼ 2x2

p þ C2
sk

2 with a cutoff frequency

x2ðk ¼ 0Þ ¼
ffiffiffi

2
p

xp (here, xp is the characteristic plasma
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frequency, common for both positive and negative ions).

Finally, with the help of RPT, we have derived a dissipative

(here damped) nonlinear Schr€odinger equation (NLSE).

Damping arises due to the ion-neutral collision. After solving

this damped NLSE numerically and analytically, we have

obtained bright solitons and dark solitons. Also, we have

observed that the damping causes the soliton (bright and dark)

amplitude to decay with time.

The outline of this paper is as follows: in Sec. II, we dem-

onstrate the complete set of two fluid equations to describe

the model. In Sec. III, we derive the damped NLSE using

RPT. In Sec. IV, we discuss the effect of ion-neutral collision

on modulational instability. In Sec. V, we elaborately discuss

about the soliton solutions and the collisional effects on these

solutions. Finally, the results are summarized in Sec. VI.

II. PHYSICAL ASSUMPTIONS AND BASIC EQUATIONS

We have considered a homogeneous unbounded and

unmagnetized pair-ion plasma system. The plasma constitu-

ents are positive and negative fullerene ions (Cþ
60 and C�

60)

without electrons. As per the experimental observations,20–23

we have considered pair-ion plasmas with equal mass mþ
¼ m� ¼ mðsayÞ [where m6 is the positive (negative) ion

mass] but slightly different [range of ð0:3� 0:5ÞeV] in tem-

perature Tþ 6¼ T� [where T6 is the positive (negative) ion

temperature]. We have assumed that the plasma is in the

equilibrium state at �1, where electrostatic potential / ¼ 0,

positive ion number density nþ ¼ nþ0, and negative ion num-

ber density n� ¼ n�0. The plasma is overall quasi-neutral,

and we have assumed that the ions are singly charged, and so,

in equilibrium, the quasineutrality condition is satisfied, i.e.,

nþ0 ¼ n�0 ¼ n0 (say).

Before going to the details of the physical model, we

have introduced a new temperature variable T¼ðTþþT�Þ=2.
We have taken an explicit density dependence of the pressure

in the form p6 ¼ Cn
c
6
, where c is the ratio of the two specific

heats and C is a constant. As c ¼ ðf þ 2Þ=f , where f is the

number of degrees of freedom, in one dimensional cases, we

have considered c¼ 3 for one degree of freedom. In a weakly

ionized pair-ion plasma, ions (positive and negative) suffer

collisions with neutrals and with themselves. In a pair-ion

(with equal mass and different temperatures) plasma, the posi-

tive (negative) ion-neutral collision frequency (�6n) can be

estimated32 as

�6n ¼ nnr6n

ffiffiffiffiffiffiffiffiffiffiffi

kBT6

m

r

s�1; (1)

where nn is the neutral density and r6n � 5� 10�15 cm2 is

the scattering cross section. The positive ion-negative ion

collision frequency (�c
6
) can be estimated32 as

�c
6
¼ 1:8� 10�19 n0e

4lnK
ffiffiffiffi

m
p

T
3=2
6

" #

s�1; (2)

where lnK � ð10� 20Þ is the Coulomb Logarithm.

Experimental observations18,20–23 reveal that in equal mass

pair-ion plasmas, the temperature of positive and negative

ions is slightly different [range of ð0:3� 0:5ÞeV] due to the

different charging processes. Numerical estimations show

that within the observed temperature range, �6n � �c
6
, and

therefore, we consider only the ion-neutral collisions.

We have taken all dependent variables as functions of

coordinate variable x and time variable t. Therefore, the nor-

malized two-fluid equations for the pair-ion plasmas with

ion-neutral collision are as follows:

@n6
@t

þ @

@x
ðn6u6Þ ¼ 0; (3)

@u6
@t

þ u6
@u6
@x

¼ 7 @/

@x
� r6n6

@n6
@x

� ~�6nu6; (4)

@2/

@x2
¼ n� � nþ; (5)

where the physical parameters r6 ¼ T6=T and ~�6n ¼ �6n=
xp. The space and time coordinates are normalized by the

plasma Debye length ðkDÞ and the inverse of plasma fre-

quency (xp), respectively. The variable number density (n),

electrostatic potential ð/Þ, and velocity ðu6Þ of ions are nor-
malized by n0, T/e, and acoustic speed ðCsÞ, respectively.
The plasma parameters are the Debye length kD ¼ ð�0cT=
n0e

2Þ1=2 and plasma frequency xp ¼ ðn0e2=�0mÞ1=2, where
�0 is the permittivity in free space. This defines the acoustic

speed Csð¼ xpkDÞ ¼ ðcT=mÞ1=2.

III. NONLINEAR EVOLUTION EQUATIONS

In order to analyze the propagation characteristics of

nonlinear modulated waves in a pair-ion plasma from the

basic model, Eqs. (1)–(3), we introduce the following slow

space and time scales to observe the slow variation of modu-

lated wave amplitude:33

n ¼ �ðx� ktÞ; s ¼ �2t; (6)

where k is the group velocity of the propagated wave to be

determined later by the compatibility condition and � is a

small real parameter that characterizes the strength of nonlin-

earity. We expand all the physical quantities n6, u6, and /

in powers of � in the following way:

Al ¼ A0 þ
X

1

n¼1

�n
X

1

l¼�1
A
ðnÞ
l ðn; sÞ exp ilðkx� xtÞð Þ: (7)

The reality condition for all physical quantities is A
ðnÞ
�l

¼ ðAðnÞ
l Þ�; the superscript star denotes the complex conju-

gates and A
ðnÞ
l stands for n

ðnÞ
6;l; u

ðnÞ
6;l; and /:

Note that in equal mass pair-ion plasmas, the collective

modes of IAWs in the presence of collisions are not yet

observed in any experiment. Therefore, to incorporate the

ion-neutral collisional effects in the nonlinear regime, we

consider ð�6n=xp � 1Þ, i.e., since we assumed that the ion-

neutral collision frequency is much smaller than the plasma

frequency. Thus, for consistency (between the assumption

and perturbation), we consider the following scaling:

052303-2 Sikdar et al. Phys. Plasmas 25, 052303 (2018)



~�6n �
�6n

xp

¼ �6�
2; (8)

where �6 is the proportionality constant which defines the

normalized ion-neutral collision frequencies for positive and

negative ions.

Now, to obtain the nth-order reduced equations

(B1)–(B3) (details are given in Appendix B), we substitute

the stretched variables [Eq. (4)], the expansion of the physi-

cal quantities [Eq. (5)], and the scaling [Eq. (6)] into the

normalized Eqs. (1)–(3). For the first order (n¼ 1), first har-

monics (l¼ 1), we obtain the following set of equations:

u
ð1Þ
6;1 ¼

x

k
n
ð1Þ
6;1; (9)

�xu
ð1Þ
6;1 ¼ 7k/

ð1Þ
1 � r6kn

ð1Þ
6;1; (10)

�k2/
ð1Þ
1 ¼ n

ð1Þ
�;1 � n

ð1Þ
þ;1: (11)

This system of equations determines the dispersion

relation

1

ðrþk2 � x2Þ þ
1

ðr�k2 � x2Þ þ 1 ¼ 0; (12)

of electrostatic wave in a pair-ion plasma. Solving this dis-

persion relation, we get two distinct modes of electrostatic

wave in terms of frequency square (x2), which is defined as

x2 ¼ 1þ k26
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1� rþr�Þk4
p

: (13)

When the wave number k is very small, these modes

behave as

x2 ffi k2; (14)

and

x2 ffi 2þ k2: (15)

In dimensional form, we obtain the two modes as observed

by experiment,18 namely, low frequency ion acoustic wave

(lower mode) x2 ¼ C2
sk

2 and high frequency ion plasma

wave (upper mode) x2 ¼ 2x2
p þ C2

sk
2. The graphical repre-

sentation of Eq. (13) with plasma parameters Tþ ¼ 0:5 eV
and T� ¼ 0:9 eV is depicted in Fig. 1. The curves in this fig-

ure are in qualitative agreement with the modes observed in

experiments.

The third mode in pair-ion plasmas, i.e., intermediate-

frequency wave (IFW), which is observed in experiment,18

cannot be obtained in theory in the present studies. IFW has

a strange feature that its group velocity is negative and phase

velocity is positive, i.e., the mode is like a backward mode.

However, Vranjes et al.27 have studied a backward mode in

pair-ion plasmas with electron impurities. They have shown

that the electron plasma mode may become a backward

mode in the presence of a density gradient.

In the second order (n¼ 2), first harmonics (l¼ 1), we

obtain the following relations in the matrix form:

n
ð2Þ
6;1; u

ð2Þ
6;1

h iT

¼ 6iðkk� xÞ

� 2xk

ðr6k2 � x2Þ2
;
ðr6k2 þ x2Þ
ðr6k2 � x2Þ2

" #T
@/

ð1Þ
1

@n

7
k2

ðr6k2 � x2Þ ;
wk

ðr6k2 � x2Þ

" #T

/
ð2Þ
1 ;

(16)

where the superscript T represents the transpose of the matrix.

We also deduce the following group velocity term by the

compatibility condition:

k ¼ @x

@k
¼ x

k
� 1

xk
1

ðrþk2 � x2Þ2
þ 1

ðr�k2 � x2Þ2

" # : (17)

For next order (n¼ 2), we obtain the second-harmonic modes

(l¼ 2) in terms of /
ð1Þ2
1

/
ð2Þ
2 ; n

ð2Þ
þ;2; u

ð2Þ
þ;2; n

ð2Þ
�;2; u

ð2Þ
�;2

h iT

¼ A; B; C; D; E
� �T

/
ð1Þ2
1 : (18)

The expressions for A;B;C;D;E are given in Appendix A [see

Eqs. (A1)–(A5)]. The second order zeroth-harmonic modes

(n¼ 2 and 3; l¼ 0) that appear due to the self-interaction of

the modulated carrier wave are obtained by the following

relations:

/
ð2Þ
0 ; n

ð2Þ
þ;0; u

ð2Þ
þ;0; n

ð2Þ
�;0; u

ð2Þ
�;0

h iT

¼ A1; B1; C1; B1; D1

� �T j/ð1Þ
1 j2: (19)

The expressions for A1;B1;C1;D1 are given in Appendix A

[see Eqs. (A6)–(A9)]. Finally, in third order first-harmonic

modes (n¼ 3, l¼ 1), the coefficient of /
ð3Þ
1 is zero by the dis-

persion relation, and the following nonlinear Schr€odinger

equation (NLSE) for /
ð1Þ
1 ½¼ w
 is obtained:

i
@w

@s
þ P

@2w

@n2
þ Qjwj2wþ iCcw ¼ 0; (20)

FIG. 1. Numerical solution of Eq. (13) for temperatures Tþ ¼ 0:5 eV and

T� ¼ 0:9 eV. In this figure, the blue line denotes the ion acoustic wave

(lower mode) and the dotted red line denotes the ion plasma wave (upper

mode).
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with a dissipative term Cc. The coefficient P in the NLSE

known as the group dispersion coefficient is related to the cur-

vature of the dispersion relation xðkÞ [Eq. (12)], and Q is

related to the nonlinear frequency shift. For the high frequency

ion plasmas wave, P and Q are always positive depending on

the wave numbers k (Figs. 2 and 3). However, P is always

negative and Q is both positive and negative for the low fre-

quency ion acoustic wave depending on the wave numbers k

(Figs. 2 and 3). The dissipative term

Cc ¼
1

2

1

ðrþk2 � x2Þ2
þ 1

ðr�k2 � x2Þ2

 !�1

� �þ

ðrþk2 � x2Þ2
þ ��

ðr�k2 � x2Þ2
� �

; (21)

is always positive for all wave numbers k (Fig. 4), which

depends on the collision of ions with neutral particles. So,

this dissipation term yields damping of the wave. We observe

that from the expression of Cc, if the collision frequency �6n

is zero, i.e., both �þ and �� are zero, then, the dissipative

term Cc vanishes. Thus, for the collisionless system (Cc ¼ 0),

we can only get the NLSE without the dissipation term which

generates a modulated wave with constant amplitude. On the

other hand, for the collisional system (Cc 6¼ 0), we can get a

damped NLSE, yielding a damped modulated wave whose

amplitude decays with time.

IV. EFFECTS OF ION-NEUTRAL COLLISIONS
ON MODULATION INSTABILITY

By assuming the fact that the neutral atoms collide with

ions induces dissipation, the amplitude evolution equation

(20) possesses the following plane-wave solution:

w ¼ w0ðsÞ exp �i

ðs

0

Dðs0Þds0
� �

; (22)

where w0ðsÞ and DðsÞ are the amplitude of the pump carrier

wave and the nonlinear frequency shift in the presence of dis-

sipation, respectively. We have substituted this plane-wave

solution in Eq. (20) and got the following two equations:

dw0

ds
þ Ccw0 ¼ 0 ) w0ðsÞ ¼ w00 exp �Ccs½ 
; (23)

and

DðsÞ ¼ �Qjw0ðsÞj2 ¼ �Qjw00j2 exp �2Ccs½ 
; (24)

where w00 is a real constant. Also, we have observed that

w0ðsÞ ! 0 as s ! 1 implies that w0 is stable. For stability

analysis, we consider the perturbation about this stable solu-

tion in the following standard procedure:

w ¼ w0ðsÞ þ ~wðn; sÞ
h i

exp �i

ðs

0

Dðs0Þds0
� �

; (25)

where ~wðj~wj � w0Þ is the perturbed amplitude of the modu-

lated wave. Now, assuming a space-time dependence pertur-

bation in the form ~w � exp ði#Þ, where # ¼ ~kn�
Ð s

0
~xð�sÞd�s

is the modulated phase with the wave number ~kð� kÞ and

the modulation frequency ~xð� xÞ, from Eq. (20), we have

obtained the following dispersion relation:

~x þ iCcð Þ2 ¼ P2 ~k
4 � 2PQjw0j2 ~k

2
: (26)

From the dispersion relation [Eq. (26)], we have observed

that the system is stable for PQ< 0. However, for PQ> 0,

the system becomes unstable and the instability occurs known

as modulational instability (or caviton instability in the case

of one dimension).34 For PQ> 0, we must have both P and Q

are of the same sign. In this particular problem, we have both

the cases P< 0, Q< 0 and P> 0, Q> 0 for some different k.

Keeping the collision in the system, the instability could

occur if

~k
2
< ~k

2

cr ¼
2Q

P

� �

jw0j2; (27)

which provides the following inequality:

Cc <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 ~k
2 ~k

2

cr

~k
2
� 1

 !

v

u

u

t : (28)

(a) (b)

FIG. 2. Numerical solution of the variations of group dispersion coefficient

P with respect to k derived from IAW (left figure) and IPW (right figure).

The plasma parameters are (a) Tþ=T� ¼ 1:5 and (b) Tþ=T� ¼ 0:6.

(a) (b)

FIG. 3. Numerical solution of the variations of nonlinear coefficient Q with

respect to k derived from IAW (left figure) and IPW (right figure). The

plasma parameters are the same as Fig. 2.

(a) (b)

FIG. 4. Numerical solution of the variations of Cc with respect to k derived

from IAW (left figure) and IPW (right figure). The plasma parameters are

(a) Tþ/T– ¼ 1.5, �þ¼ 0.01, and �– ¼ 0.02 and (b) Tþ/T– ¼ 0.6, �þ¼ 0.01,

and �– ¼ 0.02.
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This determines the maximum time smax to observe instability

smax ¼
1

2Cc

ln
2PQ~k

2jw00j2

C
2
c þ P2 ~k

4

0

@

1

A; (29)

which implies that the growth of instability will cease for

s � smax. In the case PQ> 0, we have obtained a dispersion

relation

Cþ Ccð Þ2 ¼ 2PQjw0j2 ~k
2 � P2 ~k

4
; (30)

for the instability growth rate by putting ~x ¼ iC in Eq. (26).

Therefore, the maximum value of ~k
2
is

~k
2

max ¼
Q

P

� �

jw0j2 ¼
Q

P

� �

jw00j2 exp �2Ccsð Þ; (31)

which yields the maximum growth rate

CmaxðcollisionalÞ ¼
ffiffiffi

2
p

jQjjw0j2 � Cc: (32)

Thus, from the above relation, the instability occurs when
ffiffiffi

2
p

jQjjw0j2 > Cc.

In the case of the collisionless system, we can put

Cc ¼ 0. So, in this case, it does not have any dissipation, and

the dispersion relation of the modulated wave can be obtained

by putting Cc ¼ 0 in Eq. (26) which reads as

~x2 ¼ P2 ~k
4 � 2PQjw00j2 ~k

2
: (33)

Also, the instability criteria for PQ> 0 can be obtained in

the same way which is

~k
2
< ~k

2

cr ¼
2Q

P

� �

jw00j2; (34)

and the maximum growth rate

CmaxðcollisionlessÞ ¼ lim
Cc!0

CmaxðcollisionalÞ

¼
ffiffiffi

2
p

jQjjw00j2: (35)

Comparing both the cases of collisional and collisionless

systems, we obtain

CmaxðcollisionlessÞ > CmaxðcollisionalÞ;

as Cc > 0.

V. SOLITON SOLUTIONS

In the above damped NLSE [Eq. (20)], for the ion acous-

tic mode, the group dispersion coefficient P [Eq. (A10)] is

negative, and for the ion plasma mode, P is positive for small

wave number k. However, for the ion acoustic mode, the non-

linear coefficient Q [Eq. (A11)] is both positive and negative

depending on the wave number k, and for the ion plasma

mode, Q is always positive. Now, to get the soliton solutions

of the damped NLSE [Eq. (20)], we have normalized the

equation in the following form:

i
@w

@�s
þ 1

2
jd

@2w

@�n
2
þ jnjwj2wþ ieðwÞ ¼ 0; (36)

where �s ¼ jQjs; �n ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jQj=2jPj
p

; eðwÞ ¼ Ccw=jQj, and jd
¼ jn ¼ 61. The solutions of the normalized NLSE [Eq.

(36)] determine nonlinear excitations, in the form of bright

and dark solitons. This equation yields bright or envelope

solitons for jd ¼ �1; jn ¼ �1, and jd ¼ þ1; jn ¼ þ1,

whereas it gives dark solitons for jd ¼ �1; jn ¼ þ1. We

have solved Eq. (36) numerically for jd ¼ 61; jn ¼ 61 and

also analytically. Analytical solutions in each cases are

shown in following Subsections.

A. Bright soliton: Collisionless pair-ion plasmas

In the case of collisionless pair-ion plasmas, collisional

frequency is zero, i.e., �6 ¼ 0, and so, Cc ¼ 0. Therefore, we

can put eðwÞ ¼ 0 in Eq. (36). Now, we have the usual NLSE

which is solved for the two different sets of values of jd and

jn, which are jd ¼ jn ¼ �1 and jd ¼ jn ¼ þ1. Solutions

of this NLSE can be obtained using the inverse scattering

transform. Let us consider that a solution is of the form

wðy; tÞ ¼
ffiffiffiffiffiffiffiffiffi

qðyÞ
p

exp ½iuðy; tÞ
, where y ¼ �n � V�s is a travel-

ling wave coordinate and t ¼ �s. Therefore, the amplitude of

the wave envelope, jwj ¼ ffiffiffi

q
p

, is a travelling wave, moving

with the group velocity k plus the velocity V. After separating

the real and imaginary parts, we solve the ordinary differen-

tial equation for u and q (with the boundary condition q ! 0

as n ! 61). Finally, we obtain the following single bright

solitons which are in terms of actual parameters:

wðn; sÞ ¼ asech a

ffiffiffiffiffiffiffiffi

jQj
2jPj

s

n�
ffiffiffiffiffiffiffiffiffiffiffiffi

2jPQj
p

Vs

	 


2

4

3

5

� exp is1

ffiffiffiffiffiffiffiffi

jQj
2jPj

s

Vnþ
ffiffiffiffiffiffiffiffiffiffi

jPQj
2

r

a2 � V2ð Þs

 !

2

4

3

5;

(37)

where V is the velocity and “a” is the amplitude of the soli-

ton. In the above solution, s1 ¼ þ1 for the set jd ¼ jn ¼ �1

and s1 ¼ �1 for the set jd ¼ jn ¼ þ1. This soliton shows

that after they experience the collisions, they emerge with

the same shape and velocity, also having an exponential fac-

tor, making the oscillation between maxima and minima.

Numerically, a single bright soliton is depicted in Fig. 5 for

different plasma parameters.

(a) (b)

FIG. 5. Numerical solution of the bright (envelope) soliton of Eq. (20)

derived from IAW (left figure) for k¼ 3.0 and IPW (right figure) for k¼ 1.0.

Both figures are derived for the plasma parameter Tþ=T� ¼ 0:6.
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B. Bright soliton: Collisional pair-ion plasmas

In the case of collisional pair-ion plasmas, the colli-

sional frequency, �6 6¼ 0, and therefore, Cc 6¼ 0. With this

damping term (Cc 6¼ 0), Eq. (36) is not a completely integrable

Hamiltonian system, and therefore, the system is not exactly

solvable. However, we can obtain an approximate analytical

solution of the damped NLSE [Eq. (36)] by using soliton per-

turbation analysis.35,36 Therefore, we have assumed that the

amplitude of the soliton is time dependent, and the general

solution of this perturbed soliton is as follows:

wð�n;�sÞ ¼ að�sÞsech að�sÞ �n � bð�sÞ
� �� �

� exp is1�n �Vð�sÞ þ is1rð�sÞ
� �

; (38)

where a, b, r, and �V are the time dependent soliton param-

eters. Finally, applying the conservation laws for the

NLSE (conserved integral relations), we obtain the follow-

ing bright soliton (envelope soliton) in the presence of

ion-neutral collision, which in terms of actual variable

reads as

wðn; sÞ ¼ a0 exp �2Ccsð Þsech a0 exp ð�2CcsÞ
ffiffiffiffiffiffiffiffi

jQj
2jPj

s

n�
ffiffiffiffiffiffiffiffiffiffiffiffi

2jPQj
p

V0s

	 


2

4

3

5

� exp is1

ffiffiffiffiffiffiffiffi

jQj
2jPj

s

V0n�
ffiffiffiffiffiffiffiffiffiffi

jPQj
2

r

a20
exp ð�4CcsÞ � 1

4Cc

� �

� V2
0s

� �

" #

2

4

3

5; (39)

where a0 and V0 are the initial values of a and V, respec-

tively. In the limit Cc ! 0, we recover the previous result

[Eq. (37)] (with a0 ¼ a and V0 ¼ V). It is clear that as time

elapses, the amplitude of the bright (envelope) soliton

decreases exponentially with a decay rate �2Cc. The numer-

ical solution in Fig. 6 also shows similar nature.

C. Dark soliton: Collisionless pair-ion plasmas

In this case, we have solved the NLSE [Eq. (36)] for

jd ¼ �1; jn ¼ þ1. Proceeding as before, we have obtained

the dark soliton using inverse scattering transformation subject

to the boundary condition q ! a (a constant). Finally, we

obtain a solution which is in actual parameter looks like35,36

wðn; sÞ ¼ aK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh2 fð Þ þ ð1� K2Þ
K2

r

exp i

ffiffiffiffiffiffiffiffi

jQj
2jPj

s

V þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K2
p� �

n�
ffiffiffiffiffiffiffiffiffiffi

jPQj
2

r

ða2ð3� K2Þþ2aV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K2
p

þ V2Þs

 !

þ g

2

4

3

5;

(40)

where f ¼ aK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jQj=2jPj
p

n�
ffiffiffiffiffiffiffiffiffiffiffiffi

2jPQj
p

Vs

	 
h i

and g

¼ tan�1½ K
ffiffiffiffiffiffiffiffiffi

1�K2
p tanhðfÞ
 and “a” is the amplitude of the dark

soliton, V is the velocity of dark soliton, and K(0 < K � 1) is

an arbitrary parameter. Numerically, a single dark soliton is

depicted in Fig. 7. Generally, dark solitons are also called a

gray soliton when jKj < 1 and a black soliton when jKj ¼ 1.

So, in the case of jKj ¼ 1, from the above equations, we get

black solitons as

wðn; sÞ ¼ atanh a

ffiffiffiffiffiffiffiffi

jQj
2jPj

s

n�
ffiffiffiffiffiffiffiffiffiffiffiffi

2jPQj
p

Vs

	 


2

4

3

5

� exp i

ffiffiffiffiffiffiffiffi

jQj
2jPj

s

Vn�
ffiffiffiffiffiffiffiffiffiffi

jPQj
2

r

2a2 þ V2ð Þs

 !

2

4

3

5:

(41)

(a) (b)

FIG. 6. Numerical solution of the bright (envelope) soliton of Eq. (36)

derived from IAW (left figure) and IPW (right figure) in the presence of dis-

sipation (Cc ¼ 0:1) due to the collision.

(a) (b)

FIG. 7. Numerical solution of the dark (envelope) soliton of Eq. (20) derived

from IAW (left figure) for k¼ 1.0 and Tþ=T� ¼ 0:6. The numerical solution

of the dark (envelope) soliton of Eq. (36) is derived from IAW (right figure)

in the presence of dissipation (Cc ¼ 0:1) due to the collision.
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D. Dark soliton: Collisional pair-ion plasmas

With this damping term (Cc 6¼ 0), Eq. (36) is not a

completely integrable Hamiltonian system, and so, the system

is not exactly solvable. Therefore, as earlier, we have assumed

that the amplitude of the soliton is time dependent, and gen-

eral solutions of dark (black) solitons are as follows:37,38

wð�n;�sÞ ¼ að�sÞtanh að�sÞ �n � bð�sÞ
� �� �

exp i�n �Vð�sÞ � irð�sÞ
� �

; (42)

where a, b, r, and �V are the time dependent soliton parame-

ters. Now, applying the conservation laws for the NLSE, we

have obtained

að�sÞ ¼ a0 exp �Cc�sð Þ; Vð�sÞ ¼ V0 exp �Cc�sð Þ; (43)

where a0 and V0 are the initial values of a and V, respec-

tively. The dark soliton amplitude also decays exponentially

with time having a decay rate �Cc due to the ion-neutral col-

lision. The numerical solution in Fig. 7 also shows similar

nature. In this case, the decay rate is half of that of the bright

soliton. In the limit Cc ! 0, we recover the usual single dark

soliton [Eq. (41)].

VI. CONCLUSIONS

In the preceding sections, we have demonstrated the

nonlinear dynamics of the propagating IAWs and IPWs in

the absence of the magnetic field in collisional pair-ion plas-

mas, by applying a two-fluid plasma model. The electrostatic

wave packets are governed by a damped NLSE. The damp-

ing originates due to the ion-neutral collision. To observe the

collisional effect on electrostatic wave modulation, we have

assumed that �6n
xp

� �6�
2 so that the collisional frequency is

much smaller than the plasma frequency.

In our present study, we have obtained two distinct elec-

trostatic modes, namely, a low frequency ion acoustic mode

(lower mode) and a high frequency ion plasma mode (upper

mode), where the temperature of the two ions is slightly differ-

ent. These modes are observed by previous experiments,20–23

and here, also we get exactly the same modes. Adopting the

standard reductive perturbation technique, the basic set of

equations reduces to the dissipative (here damped) nonlinear

Schr€odinger equation (NLSE) for the slowly varying electric

potential. The ion-neutral collision is responsible for the dissi-

pation on the governed NLSE. In the absence of collision, the

present analysis reveals that the ion acoustic mode is either

stable or unstable depending upon the wave number k. In the

region PQ< 0, the ion acoustic mode is stable and propagates

in the form of a dark (envelope) soliton. In the region PQ> 0,

the ion acoustic mode is unstable and propagates in the form

of a bright (envelope) soliton. However, the ion plasma mode

is always unstable and propagates in the form of a bright enve-

lope soliton. In the presence of collision, the amplitudes of

bright and dark envelope solitons decrease exponentially with

respect to time with decay rates �2Cc and �Cc, respectively.

Finally, the results of our investigation could be useful to

understand the modulated electrostatic waves in fullerene pair-

ion plasmas.

In connection with the equal mass pair-ion plasma

experiment, we must mention that we have not encountered

any experimental observations of the nonlinear structures

in pure pair-ion plasmas. However, many authors39–45 have

studied nonlinear waves (including wave modulations) in

multi-component plasmas consisting of electrons and positive

and negative ions. The experimental observations reveal that

the amplitude of the density fluctuation n1=n0 � 0:1 is suffi-

cient to observe nonlinear wave phenomena in laboratory plas-

mas. Moreover, the experimental results are well explained by

the small amplitude (weakly nonlinear) theoretical analysis.

Recently, pure pair-ion plasmas (without electrons) consisting

of fullerene ions are observed in experiment.20–23 The masses

of both the ions (positive and negative) are equal because they

are generated by the same source (fullerene ion source), but

their temperatures are slightly different due to the different

charging processes of both the positive and negative fullerene

ions.20–23 Thus, we expect that in future, the nonlinear wave

phenomena could be observed in such a plasma system, pro-

vided that the amplitude of the fluctuations are � 0:1. Also,
the investigation of collective phenomena in pair-ion plasmas

is extremely important from a diagnostic point of view, and

thus, the findings of the present investigation can be used in

diagnosing the pair-ion plasmas.

APPENDIX A: EXPRESSIONS OF DIFFERENT
COEFFICIENTS

A ¼ k2

6

ðr�k2 þ 3x2Þ
ðr�k2 � x2Þ3

� ðrþk2 þ 3x2Þ
ðrþk2 � x2Þ3

" #

; (A1)

B ¼ � k2

ðrþk2 � x2Þ Aþ 1

2

ðrþk2 þ 3x2Þk2

ðrþk2 � x2Þ2

" #

; (A2)

C ¼ x

k
B� xk3

ðrþk2 � x2Þ2

" #

; (A3)

D ¼ k2

ðr�k2 � x2Þ A� 1

2

ðr�k2 þ 3x2Þk2

ðr�k2 � x2Þ2

" #

; (A4)

E ¼ x

k
D� xk3

ðr�k2 � x2Þ2

" #

; (A5)

A1 ¼
1

2ð1� k2Þ
ðrþ � k2Þ 2kxk

3 þ x2k2 þ r�k4

ðr�k2 � x2Þ2
;

"

�ðr� � k2Þ 2kxk
3 þ x2k2 þ rþk4

ðrþk2 � x2Þ2

#

; (A6)

B1 ¼
1

ðk2 � rþÞ
A1 þ

2kxk3 þ x2k2 þ rþk4

ðrþk2 � x2Þ2

" #

; (A7)

C1 ¼ kB1 �
2x

k

k4

ðrþk2 � x2Þ2

" #

; (A8)
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D1 ¼ kB1 �
2x

k

k4

ðr�k2 � x2Þ2

" #

: (A9)

The group dispersion coefficient P is given by

P ¼ � 1

2

k

xk
ðkk� xÞ þ 4x

k
ðkk� xÞ2

"

� ðr�k � xkÞ
ðr�k2 � x2Þ3

þ ðrþk � xkÞ
ðrþk2 � x2Þ3

" #
#

¼ 1

2

@2xðkÞ
@k2

: (A10)

The coefficient of the nonlinear term Q is given by

Q ¼ ðkk� xÞ
2

2xkðCþ C1Þ
ðrþk2 � x2Þ2

þ 2xkðEþ D1Þ
ðr�k2 � x2Þ2

"

þðrþk2 þ x2ÞðBþ B1Þ
ðrþk2 � x2Þ2

þ ðr�k2 þ x2ÞðDþ B1Þ
ðr�k2 � x2Þ2

#

:

(A11)

APPENDIX B: OUTLINES OF THE CALCULATIONS

Substitution of Eqs. (6)–(8) in Eqs. (3)–(5) yields the

following n-th order reduced set of equations:

�ilxn
ðnÞ
6;l � k

@n
ðn�1Þ
6;l

@n
þ
@n

ðn�2Þ
6;l

@s
þ ilku

ðnÞ
6;l þ

@u
ðn�1Þ
6;l

@n

þ
X

1

n0¼1

X

1

l0¼�1
ilku

ðn0Þ
6;l0n

ðn�n0Þ
6;l�l0 þ

@

@n
u
ðn0Þ
6;l0n

ðn�n0�1Þ
6;l�l0

	 


� �

¼ 0;

(B1)

�ilxu
ðnÞ
6;l6ilk/

ðnÞ
l þ r6ilkn

ðnÞ
6;l � k

@u
ðn�1Þ
6;l

@n

6
@/

ðn�1Þ
l

@n
þ r6

@n
ðn�1Þ
6;l

@n
þ �6u

ðn�2Þ
6;l þ

@u
ðn�2Þ
6;l

@s

þ 1

2

X

1

n0¼1

X

1

l0¼�1
ilku

ðn0Þ
6;l0u

ðn�n0Þ
6;l�l0 þ

@

@n
u
ðn0Þ
6;l0u

ðn�n0�1Þ
6;l�l0

	 


�

þr6 ilkn
ðn0Þ
6;l0n

ðn�n0Þ
6;l�l0 þ

@

@n
n
ðn0Þ
6;l0n

ðn�n0�1Þ
6;l�l0

	 


� ��

¼ 0; (B2)

�l2k2/
ðnÞ
l þ 2ilk

@/
ðn�1Þ
l

@n
þ @2/

ðn�2Þ
l

@n2
¼ n

ðnÞ
�;l � n

ðnÞ
þ;l: (B3)
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