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Abstract In recent times the possibilities of treating cancer
using specific types of viruses are being explored. Here we
consider a nonlinear mathematical model based on ordinary
differential equations to study the efficacy of cancer therapy
using oncolytic viruses in the presence of immune response.
A cancer-immune model that describes complex interactions
underlying the ability of the immune system to inhibit tumor
growth along with its effects on the spread of oncolytic virus
population is studied. By using numerical simulations we
analyze the influence of parameters of the model on the out-
come of the therapy. Our finding is that it is possible to control
the cancer, even sometimes to extinct it, if we can properly
control some parameters relating either to the body system
or to the administration of the virotherapy.

Keywords Tumor · Oncolytic virus · Virotherapy ·
Immune response · Mathematical model

1 Introduction

In search of effective therapies of cancer, the possible use
of viruses has invoked interest in recent years. This branch
of study is known as tumor virotherapy. Some viruses like
Newcastle disease virus, Vesicular stomatities virus, etc. are
examples of viruses that infect the tumor cells. There are
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also viruses like ONYX-015 (Adenovirus) which are artifi-
cially engineered for this specific purpose. The aim of this
therapy is to infect the tumor cells with these viruses which
will be extinct together the tumor cells while leaving the non-
tumor cells more or less unaffected. Some important recent
references on this topic are [1–18] etc. and the references
therein. At the same time the role of body immune system in
the context of the progress of cancer cells has been discussed
in a number of works. An early reference is due to Burnet
[19] in which it was hypothesized that the progression of
cancer is possible only when the immune response system
remains nonreactive to certain proteins synthesized by the
cancer cells. The phenomena is technically known as toler-
ance. In general, immune responses are largely of two types,
one is the innate immune response and the other is adaptive
immune response. It is the later which is the active part of the
immunological system. Again, broadly they are of two types,
the antibodies and the killer cells. While the antibodies fight
the foreign elements like viruses, bacteria etc. by recognizing
foreign proteins outside the cells, the killer cells recognize
the mutated proteins of the cancer cells on display on cell
walls. These killer cells are also known as cytotoxic T lym-
phocytes (CTL). After the recognition, the CTLs undergo a
process of cell division. Then they release certain molecules,
perforin for instance, which kills the cancer affected cells.
The process is called reactivity. It is also possible that the
CTLs fail to recognize the mutated proteins as different from
normal proteins of the body. In this case the phenomena of
tolerance is said to take place. It is believed that the progress
of cancer is in the period when the adaptive immune sys-
tem exhibits tolerance. Although, in the recent times, we do
not have full understanding of the immunological principles
related to the problem of cancer, it is certain, as suggested by
recent studies, that such relations are present in some form.
In this paper we present a mathematical model where we con-
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sider the efficiency of virotherapy in the presence of immune
responses of the body. Our approach is through numerical
simulations. It is revealed that if it is possible to adjust val-
ues of certain parameters, either associated with the body
system or with the administering virus, then the virotherapy
can be effective in the treatment of cancer.

The remaining portion of this paper is organized as fol-
lows: In Sect. 2, we briefly discuss positivity and bounded-
ness of the mathematical model, examine the conditions for
the existence of positive equilibrium states and stability crite-
ria of infection-free and interior equilibria. Next we demon-
strate the occurrence of backward bifurcation phenomena.
Section 3 deals with numerical illustrations showing typical
dynamical behaviours of our basic model. Lastly we give
some remarks in concluding Sect. 4.

2 Mathematical model

We consider here the following system of non-linear ordinary
differential equations that models the complex dynamics of
the population of two types of tumor cells, uninfected and
infected, and immune response over time t

dx

dt
= φ(x, y)x − βψ(x, y)y, (1a)

dy

dt
= βψ(x, y)y − δy − pyz, (1b)

dz

dt
= f (y, z)− qz, (1c)

where x = x(t) stands for the uninfected tumor cell pop-
ulation, y = y(t) the infected tumor cell population and
z = z(t) the population of the virus specific CTLs. The func-
tion φ(x, y) describes the growth and death processes of the
uninfected tumor cells and the functionψ(x, y) describes the
rate at which the tumor cells become infected by the virus.
These two functions can take several different forms depend-
ing on how much detail of the biology is incorporated into
the model. The coefficient β represents the infectivity or the
transmission rate which also includes the replication rate of
viruses. The deaths of virus infected cells occur at a rate δy, δ
is called the viral cytotoxicity. The function f (y, z) describes
the rate of immune response due to virus activation. In the
absence of antigenic stimulation the CTLs die with a rate
qz. The particular form of this response depends on different
assumptions [20–22]. Here we assume that the production of
CTLs depends on both the population of infected cells and
CTL cells, for this reason we assume that f (y, z) = γ yz,
where γ stands for the strength of the CTL response or CTL
responsiveness [12]. Infected cells are destroyed by the CTL
response at a rate pyz, corresponding to lytic effector mecha-
nisms of CTL response, where the coefficient p (> 0) repre-
sents the strength of the lytic component [23,24]. The logis-

tic growth is a widely used growth pattern, here we assume
tumor grows logistically with maximum size the tumor is
allowed to occupy is given by its carrying capacity k. We,
therefore, take φ(x, y) in the form

φ(x, y) = r
(

1 − x + y

k

)
,

where r is the maximum per capita growth rate of uninfected
tumor cells. We consider the virus spread termψ(x, y) in the
form x

x+y+α , a fast virus spreading term. The rationale behind
the assumption of the fast virus spreading term is discussed
in detail in [5]. Based on these assumptions the model (1a,
1b, 1c) takes the following form

dx

dt
= r x

(
1 − x + y

k

)
− β

xy

x + y + α
, (2a)

dy

dt
= β

xy

x + y + α
− δy − pyz, (2b)

dz

dt
= γ yz − qz. (2c)

All the parameters of the system are assumed to be positive
with initial populations x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

2.1 Positivity and boundedness of the solutions

For the well possness of the biological system, we first check
the positivity and boundedness of the system (2a–2c).

Theorem 2.1.1 All solutions of the system (2a–2c) are pos-
itive and bounded subject to the given initial conditions
x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

Proof Equation (2a) can be written as dx
x = ψ1(x, y)dt ,

where ψ1(x, y) = r
(
1 − x+y

k

) − β
y

x+y+α .
Integrating over [0, t], we can obtain x(t) = x(0)

e
∫ t

0 ψ1(x,y)dt ≥ 0 for all t ≥ 0 as x(0) ≥ 0.
Again equation (2b) gives dy

y = ψ2(x, y, z)dt ,
where ψ2(x, y, z) = β x

x+y+α − δ − pz.

By integration in the range [0, t], we again see that y(t) =
y(0)e

∫ t
0 ψ2(x,y,z)dt ≥ 0 for all t ≥ 0 as y(0) ≥ 0. Similarly

from (3c), z(t) ≥ 0 for all t ≥ 0.
To show all solutions will remain bounded we proceed

as follows. From (2a), we have dx
dt ≤ r x

(
1 − x+y

k

) ≤
r x

(
1 − x

k

)
, which gives lim supt→∞ x(t) ≤ k, by usual

comparison theorem. Again we notice that

d

dt

(
x + y

)
= r x

(
1 − x + y

k

)
− δy − pyz

≤ r x
(

1 − x + y

k

)
≤ rk

(
1 − x + y

k

)
,

which also gives lim supt→∞(x(t)+ y(t)) ≤ k for all t ≥ 0.
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Now, To find the bound of z, we consider V (t) = x(t)+
y(t)+ p

γ
z(t).

Therefore dV
dt = dx

dt + dy
dt + p

γ
dz
dt = r x

(
1 − x+y

k

) − δy −
pq
γ

z ≤ 2r x − r
k x2 − mV = rk −

(√
r
k x − √

rk
)2 − mV ≤

rk − mV , where m = min(r, δ, q). Hence it follows that
lim supt→∞ V (t) ≤ rk

m .
Thus, z is also ultimately bounded by some positive con-

stant and all the solutions of the system (2a–2c), that initiate
in R3+ are confined in the region
� = {(x, y, z) ∈ R3+/x ≤ k, x + y ≤ k, x + y + p

γ
z ≤

rk
m }, which is positively invariant under the flow induced by
the system (2a–2c) and the model is well posed. �	

2.2 Equilibria

The system (2a–2c) always has two equilibrium solutions
E1 = (0, 0, 0), E2 = (k, 0, 0). Other steady states are given
by

E3 =
⎛
⎝ (k − α)γ − 2q − γ

√
(k − α)2 − 4k(βq

rγ − α)

2γ
,

q

γ
,

2(β − δ)kq − r(q + αγ )(k + α)− r(q + αγ )

√
(k − α)2 − 4k(βq

rγ − α)

2kpq

⎞
⎠,

E4 =
⎛
⎝ (k − α)γ − 2q + γ

√
(k − α)2 − 4k(βq

rγ − α)

2γ
,

q

γ
,

2(β − δ)kq − r(q + αγ )(k + α)+ r(q + αγ )

√
(k − α)2 − 4k(βq

rγ − α)

2kpq

⎞
⎠,

E5 =
(
(k + α)δr − (β − δ)δk − δ

√
M

2βr
,
(β − δ)(kr + δk − βk)− (β + δ)αr − (β − δ)

√
M

2βr
, 0

)
,

E6 =
(
(k + α)δr − (β − δ)δk + δ

√
M

2βr
,
(β − δ)(kr + δk − βk)− (β + δ)αr + (β − δ)

√
M

2βr
, 0

)
,

where M = {(k + α)r − (β − δ)k}2 + 4αβkr . Out of these
six equilibrium states, E1 is the trivial equilibrium state and
E2 is the equilibrium state corresponding to only healthy
tumor cells. E1 implies that both the infected and unin-
fected tumor cells are eliminated in the absence of immune
response in due course of time because of the virotherapy.
The uninfected steady state E2 implies that complete fail-
ure of virotherapy which happens when the tumor eventually
grows to its carrying capacity. If the condition βq ≤ αγ r
is satisfied, E3 is not a biologically meaningful equilib-
rium state. In this case the coexistence of infected and unin-

fected tumor cells, in the presence of the virus specific CTL
immune response, is described by the equilibrium state E4

provided

(k − α)γ + γ

√
(k − α)2 − 4k(βq

rγ − α) ≥ 2q and

2(β−δ)kq+r(q+αγ )
√
(k − α)2 − 4k(βq

rγ − α) ≥ r(q+
αγ )(k + α) hold.

If βq > αγ r and (k − α)2 ≥ 4k
(
βq
rγ − α

)
, there is

another equilibrium point E3, provided the following condi-
tions

(k − α)γ ≥ 2q + γ

√
(k − α)2 − 4k(βq

rγ − α) and

2(β − δ)kq ≥ r(q + αγ )(k + α)+ r(q + αγ )√
(k − α)2 − 4k(βq

rγ − α) hold.

In the absence of CTL response, the coexistence of
infected and uninfected tumor cells is described by equilib-
rium E6. The remaining steady state E5 is not admissible for
the existence of positive equilibrium (The details is described
in the Appendix).

2.3 Stability analysis

To discuss the local stability of equilibrium points, we com-
pute the variational matrix of the system (2a–2c) at any point
(x, y, z) and is given by J = (Ji j )3×3,
where J11 = βxy

(x+y+α)2 − r x
k − βy

x+y+α +r
(
1 − x+y

k

)
, J12 =

βxy
(x+y+α)2 − βx

x+y+α − r x
k , J13 = 0, J21 = βy(y+α)

(x+y+α)2 , J22 =
βx

x+y+α − pz − δ − βxy
(x+y+α)2 , J23 = −py, J31 = 0, J32 =

γ z, J33 = γ y − q. At the steady state E1, the eigenvalues
of J are r , −δ and −q and hence E1 is always unstable as
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r is positive. Therefore, in the absence of virus and immune
response, susceptible cells and hence tumor will grow and
the tumor population will move away from the origin.

To see the local stability behaviour of the infection-free
equilibrium E2, we state and prove the following result.

Theorem 2.3.1 The infection-free equilibrium E2 of the sys-
tem (2a–2c), is locally asymptotically stable for ρ0 < 1 and
unstable for ρ0 > 1, where ρ0 is the basic reproduction num-
ber of the system and is given by ρ0 = βk

δ(k+α) .

Proof The variational matrix of the system (2a–2c), evalu-
ated at the infection-free steady state E2 is given by

J (E2) =

⎛
⎜⎜⎝

−r − βk
(k+α) − r 0

0 βk
(k+α) − δ 0

0 0 −q

⎞
⎟⎟⎠,

so the eigenvalues are real and are given by −r , −q and
kβ

k+α − δ. Since first two eigenvalues are negative, stability of

E2 depends on the sign of λ = kβ
k+α −δ = δ

(
kβ

δ(k+α) − 1
)

=
δ(ρ0 −1). When λ < 0, that is, when ρ0 < 1, the steady state
E2 is asymptotically stable, while it is unstable for ρ0 > 1.
As a consequence, ρ0 = 1 is a critical bifurcation value, that
is, when the ratio of the cytotoxicity to the replication rate
of the viruses equals k

k+α , a bifurcation occurs and this can
happens only when δ < β. �	
Theorem 2.3.2 The infection-free equilibrium E2 of the sys-
tem (2a–2c), is globally asymptotically stable for ρ0 < 1.

Proof In order to show that E2 is globally asymptotically
stable, construct a Lyapunov function of the form

L(x, y, z) = 1

2
(x(t)− k)2 + ky(t)+ pk

γ
z(t).

Note that L(k, 0, 0) = 0 and L(x, y, z) is positive for
(x, y, z) 
= (k, 0, 0) in R3+.

Hence
d L

dt
= (x − k)

dx

dt
+ k

dy

dt
+ pk

γ

dz

dt

= (x − k)
(

r x
(

1 − x + y

k

)
− β

xy

x + y + α

)

+ k
(
β

xy

x+y+α − δy − pyz
)
+ pk

γ
(γ yz−qz)

=−r x(k − x)
(

1− x + y

k

)
− βy

x + y + α
(x−k)2

− kδ(x+y)
y

x+y + α
−k

(
1− βk

δα

) αδy

x + y + α

− pqk

γ
z.

As, in �, x ≤ k and x + y ≤ k, it is clear that d L
dt is not

positive for βk
δα

< 1, that is, for ρ0 = βk
δ(k+α) <

βk
δα

< 1

and for all (x, y, z) in �. Moreover d L
dt = 0 only when x =

k, y = 0, z = 0. Therefore, the largest compact invariant set
in {(x, y, z) ∈ �/ d L

dt = 0} is the singleton set {(k, 0, 0)}.
From LaSalle’s principle of invariance [25,26], we see that
E2 = (k, 0, 0) is globally asymptotically stable for ρ0 < 1.

�	
Regarding the local stability of the interior equilibrium

point we have the following result.

Theorem 2.3.3 The interior equilibrium point E4 =(x, y, z)
of the system (2a–2c), is locally asymptotically stable for

rγ {k + α +
√
(k + α)2 − 4βq

rγ }2 > 4βkq.

Proof The characteristic equation of the jacobian matrix J
at E4 can be written as

|J − λI3| = λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = r x
k , a2 = pγ yz + rβx y

k(x+y+α) + αβx y
(x+y+α)3 , a3 =

pγ yz( r x
k − βx y

(x+y+α)2 ) and a1a2 − a3 = δx y
(x+y+α) (

r2

k2 x +
r x(α+pγ yz)
k(x+y+α)2 ). According to Routh-Herwitz criterion of sta-

bility, the necessary and sufficient conditions for all the roots
of the characteristic equation to have negative real part are
a1 > 0, a3 > 0, and a1a2 − a3 > 0. But from the above
expressions of a1 and a1a2 − a3, it is clear that a1 > 0 and
a1a2 − a3 > 0. Thus all the roots of the characteristic equa-
tion will have negative real parts, that is the interior equilib-
rium point E4 = (x, y, z) is locally asymptotically stable if

a3 > 0, that is, if rγ {k + α +
√
(k + α)2 − 4βq

rγ }2 > 4βkq.
Similarly it can be shown that another interior equilibrium
point E3 is locally asymptotically stable if rγ {k + α −√
(k + α)2 − 4βq

rγ }2 > 4βkq. Hence the local stability of
E3 implies the local stability of E4. �	

2.4 Existence of backward bifurcation

It is worth noting that, for the restrictions of parameters
mentioned in Sect. 2.2 above, two interior equilibria exist
which signals the presence of backward bifurcation where a
stable interior equilibrium co-exists with a stable infection-
free equilibrium for ρ0 < 1, which has recently received
much attention in the epidemiological models [27–30] and
has important implications towards the virotherapy strate-
gies, since simply reducing the basic reproduction number
less than unity is not enough to control and eliminate the
infection/disease. In the presence of backward bifurcation,
additional efforts are needed to ensure that the infection is
completely eradicated. In the following we will prove that
the system (2a–2c) exhibits a backward bifurcation when
ρ0 = 1. The proof is based on center manifold theory [31], as
described in [32] (Theorem 4.1). For this a backward bifurca-
tion parameter, β = β∗ = δ(k+α)

k , is taken, which is equiv-
alent to ρ0 = 1. Now the jacobian Jβ∗(E2) of the system
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(2a–2c) evaluated at infection-free equilibrium E2 with β =
β∗ becomes

Jβ∗(E2) =
⎛
⎝

−r −δ − r 0
0 0 0
0 0 −q

⎞
⎠.

Clearly eigenvalues of this matrix are λ1 = −r, λ2 =
0, λ3 = −q. Thus Jβ∗(E2) has a simple eigenvalue and
other two are real and negative. Let w and v be its right
and left eigenvectors respectively corresponding to the eigen-
value λ2 = 0, then w = (

δ+r
r ,−1, 0

)t
and v = (0,−1, 0)

satisfying w · v = 1. The coefficients a and b, defined in
theorem 4.1 in the paper of Castillo-Chavez and Song [32]

a =
3∑

k, j,i=1

vkwiw j
∂2 fk

∂xi∂x j
(E2, β

∗),

b =
3∑

k,i=1

vkwi
∂2 fk

∂xi∂β
(E2, β

∗),

may be now explicitly calculated as follows. Considering
only the nonzero components of the left eigenvector v and
taking into account of system (2a–2c), a and b reduced to

a = v2w
2
1
∂2 f2

∂x2 (E2, β
∗)+ 2v2w1w2

∂2 f2

∂x∂y
(E2, β

∗)

+ 2v2w1w3
∂2 f2

∂x∂z
(E2, β

∗)+ 2v2w2w3
∂2 f2

∂y∂z
(E2, β

∗)

+ v2w
2
2
∂2 f2

∂y2 (E2, β
∗)+ v2w

2
3
∂2 f2

∂z2 (E2, β
∗),

b = v2w1
∂2 f2

∂x∂β
(E2, β

∗)+ v2w2
∂2 f2

∂y∂β
(E2, β

∗)

+ v2w3
∂2 f2

∂z∂β
(E2, β

∗).

As in our system x1 = x, x2 = y, x3 = z and

f1 = r x

(
1 − x + y

k

)
− β

xy

x + y + α
,

f2 = β
xy

x + y + α
− δy − pyz,

f3 = γ yz − qz.

Second order Partial derivatives contained in the expressions
of a and b are computed as
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Fig. 1 For four values of viral cytotoxicity, δ, uninfected cells, infected cells, immune responses and overall tumor sizes are shown starting with the
initial conditions x(0) = 5, y(0) = 1 and z(0) = 2. Other parameters are fixed at r = 0.6, k = 12, α = 0.2, β = 2, γ = 0.2, p = 0.2 and q = 0.1
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∂2 f2

∂x2 (E2, β
∗) = 0,

∂2 f2

∂x∂y
(E2, β

∗)

= αδ

k(k + α)
,
∂2 f2

∂x∂z
(E2, β

∗) = 0,

∂2 f2

∂y2 (E2, β
∗) = − 2δ

k + α
,
∂2 f2

∂y∂z
(E2, β

∗)

= −p,
∂2 f2

∂z2 (E2, β
∗) = 0.

Therefore a = 2δ(δ+2r)
r(k+α) and b = k

k+α . Hence both a > 0 and
b > 0, which shows, from the theorem 4.1 of [32], that the
system (2a–2c) undergoes a backward bifurcation at ρ0 = 1.

3 Numerical simulation

In this section, we study numerically the basic dynamics
between a growing tumor cell, a replicating oncolytic virus
selective for the tumor cells and a specific cytotoxic T lym-
phocyte response by observing the effect of variations in the
model parameters. In order to study the effects of parameter

changes in the model (2a–2c), we run simulations using the
standard matlab differential integrator.

Toxicity is a primary concern with any experimental thera-
peutic agent and virotherapy agents are no different. The tox-
icity will depend on the virus strain used, the specific genetic
changes made, and the dose of administration. To consider
the effect of cytotoxicity of the virus on overall tumor load,
we use a set of parameter values r = 0.6 time−1, k =
12 cells/ mm3, α = 0.2 cells/mm3, β = 2 time−1, γ =
0.2 mm3/cells/time, p = 0.2 mm3/ cells/time and q = 0.1
time−1. In Fig. 1, uninfected cells, infected cells, immune
response and overall tumor sizes are presented graphically
for four different values of cytotoxicity δ, say, for δ =
0.2, 0.21, 0.22 and 0.3 time−1. For the above set of fixed
values of the parameters and for low level of cytotoxicity,
here δ < 0.22, tumor size reduces and we obtain tumor
eradication. An increase in the viral cytotoxicity above 0.22
increases tumor size, that is, for more cytotoxic viruses with
δ ≥ 0.22 tumor persistence is observed and hence the ther-
apy fails. At the same time, virus specific CTL cells persist
at a higher level. The explanation of this phenomena is the
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Fig. 2 For four different values of p, the strength of the lytic com-
ponent, the densities of uninfected cells, infected cells, CTL responses
and tumor sizes are shown. Other parameters are fixed at r = 0.6, k =

12, α = 0.2, β = 2, γ = 0.2, δ = 0.2, and q = 0.1. The initial popu-
lations are x(0) = 5, y(0) = 1 and z(0) = 2
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Fig. 3 Time trajectories, three dimensional phase portrait, x − y, y − z and x − z sub phase spaces depicting stable dynamics of the system
(2) for the parameter values r = 0.6, k = 12, α = 0.2, β = 1, γ = 0.2, δ = 0.22, p = 0.2 and q = 0.1, starting from the initial conditions
x(0) = 5, y(0) = 1 and z(0) = 2

following. The increased rates of tumor cell killing reduce
infected tumor cells before the virus has a chance to properly
spread. This opens the scope of increase in the pool of unin-
fected tumor cells and, therefore, the tumor size increases.
The virotherapy thus becomes ineffective.

Figure 2 shows similar features on the effect of the strength
of lytic component p. In the presence of CTL, infected cells,
uninfected cells and tumor sizes are shown for four different
values of p, say, p = 0.1, 0.2, 0.3 and 0.4. For p ≤ 0.2, over-
all tumor size reduces and results in tumor eradication. For
p > 0.2, tumor persists which is detrimental to the patient.
We also see that immune response remains at a higher level
for this range of p. There is a natural explanation of it which
is that the CTL response kills the virus faster than the rate at
which it can spread.

Figure 3 illustrates the approach of the trajectories to the
steady state E4, which is asymptotically stable for the para-
meter values as mentioned in the caption of the figure. For
this set of numerical values of the parameters, E3 is not fea-
sible. The positive equilibrium, in the presence of immune
response, is E4 = (10.6163, 0.5000, 3.5907) and in fact, the
eigenvalues of the variational matrix of the system (2a–2c) at
E4 are −0.4828, −0.240 + 0.2687i and −0.240 − 0.2687i.
The real part of the eigenvalues are all negative, which results
in an asymptotically stable state.

In Figs. 4 and 5, tumor load, densities of uninfected cell,
infected cell and CTL response versus time are plotted for

the parameter values as mentioned in the caption of the fig-
ures to observe the effects of immune responsiveness γ on
tumor size. Figure 4 shows a simulation of therapy where we
observe that for low level of CTL responsiveness γ (≤0.1)
tumor size reaches very low level. In this range of γ it is
possible to eradicate the tumor and hence we have a success-
ful therapy of cancer. For a higher strength of CTL response
γ (>0.1) tumor size increases and leads to the persistence of
tumor. In Fig. 4 tumor size is also shown for γ = 0.2, which
shows tumor persistence. For more strong CTL responsive-
ness γ , say for γ = 2, tumor size tends to its carrying
capacity as shown in Fig. 5. Our numerical experience sug-
gests that higher CTL response can result in failure of ther-
apy. This is due to the fact that the presence of strong CTL
response increases the death rate of infected cells and hence
viruses destroy at a higher rate and consequently the spread
of the virus from cell-to-cell is inhibited. As γ increases
healthy cells increase and infected cells decrease. We see
that a weak CTL response controls the cancer to lower level.
Regarding the virotherapy, the mathematical model suggests
that the therapy works better in the situation when CTL
response lies below certain level. In most virus dynamics
studies, viral replication rate is also an essential parame-
ter which plays an important role in defining the oncolytic
virus treatment outcome. Figures 6 and 7 show variation of
tumor sizes with time for different transmission rates of virus
infection.
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Fig. 4 For three values of immune responsiveness γ , tumor loads, densities of uninfected cells, infected cells and CTL responses are shown. Other
parameters are fixed at r = 0.3, k = 12, α = 0.2, β = 1, δ = 0.3, p = 0.5 and q = 0.1. The initial conditions are x(0) = 5, y(0) = 1 and
z(0) = 2
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Fig. 5 For more higher value of immune responsiveness γ , tumor load, densities of uninfected cells, infected cells and immune response are shown.
Other parameters are fixed at r = 0.3, k = 12, α = 0.2, β = 1, δ = 0.3, p = 0.5 and q = 0.1. The initial conditions are x(0) = 5, y(0) = 1 and
z(0) = 2

It is observed from our model that increasing the rate
of virus replication will improve the chances of virother-
apy success when the virus spreading term belongs to
the fast spreading class [5]. Virus load decreases with
the increase in β. In Fig. 6 the densities of uninfected
cells, infected cells and tumor size are drawn for β = 2.

Other parameters are chosen as follows r = 0.3, k =
12, α = 3, γ = 0.2, δ = 0.3, p = 0.5 and q = 0.1.
The tumor cell population converges to the steady state
E4(8.0311, 0.50000, 2.1859) which is asymptotically stable
as it is evident from the phase plane of uninfected and infected
cells.
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Fig. 6 Tumor load, densities of uninfected cells, infected cells and x − y phase plane are shown for the parameters values r = 0.3, k = 12,
α = 3, β = 2, γ = 0.2, δ = 0.3, p = 0.5 and q = 0.1. The initial conditions were chosen as x(0) = 6, y(0) = 2 and z(0) = 2
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Fig. 7 Total tumor cells and the densities of uninfected cells, infected cells are shown separately for infectivity rate β = 3. Other parameters are
r = 0.3, k = 12, α = 3, γ = 0.2, δ = 0.3, p = 0.5 and q = 0.1 and the initial conditions are x(0) = 6, y(0) = 2 and z(0) = 2

In plotting of the tumor cells in Fig. 7, we take a higher
replication rate β = 3 and see that virus therapy is beneficial
to the patient as the tumor size reduces to very low level.
For further increase in infectivity we obtain damped oscilla-

tions leading the system towards an equilibrium. The level
of virus load at this equilibrium shows how well the infec-
tion is controlled. For a higher level of CTL responsiveness,
higher infectivity rate is required as it is expected. In Fig. 8,
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Fig. 8 For three values of infectivity rateβ, tumor loads are shown. Other parameters are fixed at r = 0.3, k = 12, α = 3, γ = 2, δ = 0.3, p = 0.5,
and q = 0.1. The initial conditions are x(0) = 6, y(0) = 2 and z(0) = 2
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Fig. 9 Uninfected cells, infected cells are shown separately for the parameter values as in Fig. 8

we take a higher level of CTL responsiveness γ , say, γ = 2.
For this value of γ , tumor sizes are shown for three differ-
ent higher values of infectivity rate β, say for β = 23, 24
and 25. For β ≤ 23 tumor size remains above certain level
and consequently virotherapy fails. When β > 23 tumor
size eventually reaches very low level after damped oscilla-
tions. Figure 9 displays tumor cell populations, uninfected
and infected, depicting the control of tumor cells. Specific
feature of the dynamics is strong oscillations which is sup-
posed to be clinically reflected during treatment.

4 Conclusion

In this paper we make a numerical study of the viability
of a virotherapy of cancer in the presence of an immune
system. The final finding of our study is that the therapy can
be effective, even it is possible to drive the population of
the tumor cell to zero, that is, a complete cure of the disease,
provided that certain parameter values can be adjusted. These
parameters either pertain to the system itself, such as the
level of immune response, or related to the administration
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of the therapy, such as the infectivity of the oncolytic virus.
The dynamics of the population of two types of tumor cells,
uninfected and infected, is studied in the presence of the
immune response of the body. How the parameters indicated
for the control of tumor cell population can be adjusted is a
question to be addressed by the biologist.

Appendix

For the positive equilibrium (x, y, z), we have

r
(

1 − x + y

k

)
− β

y

x + y + α
= 0, (3a)

β
x

x + y + α
− δ − pz = 0, (3b)

γ y − q = 0. (3c)

Substituting x and y from (3b) and (3c) respectively, in equa-
tion (3a) we obtain a quadratic equation

F(z) = Az2 + Bz + C = 0 in z (4)

where the coefficients A, B and C are given by

A = p2
(

q

γ
+ α

)2

− p2
(

q

γ
+ α

) (
q

γ
+ α + q

γ
− k

)

+ p2
{
βkq

rγ
−

(
k − q

γ

)(
q

γ
+ α

)}
= p2 βkq

rγ
,

B = 2pδ

(
q

γ
+ α

)2

+
(

q

γ
+ α

) (
q

γ
+ α + q

γ
− k

)

(pβ−2pδ)−2p(β−δ)
{
βkq

rγ
−

(
k− q

γ

) (
q

γ
+ α

)}
,

and

C = δ2
(

q

γ
+ α

)2

+
(

q

γ
+ α

) (
q

γ
+ α + q

γ
− k

)
βδ

+ (β − δ)2
{
βkq

rγ
−

(
k − q

γ

) (
q

γ
+ α

)}
.

The quadratic equation F(z) = 0, can be analyzed for the
possibility of multiple non-negative equilibria under certain
conditions among the model parameters. Since the coefficient
A ia always positive, the existence of the positive solutions of
equation (4) will depend on the signs of B and C . There is a
unique positive root of the equation (4) if C < 0 and whatever
be the sign of B and thus in this case we have an unique
interior equilibrium. If C = 0, then there is an unique positive
solution of (4) if and only if B < 0. If C > 0 and either
B ≥ 0 or B2 − 4AC < 0, there are no positive solution. If
C > 0, and B < 0, B2−4AC > 0, The equation (4) has two
positive solutions corresponding to two interior equilibria of
the system (2a, 2c). One can verify that C > 0 and B < 0
can occur for some parameter values, and thus we have an
indication of the possibility of a backward bifurcation. To

check for this, we set B2 − 4AC = 0 and solve for the
critical value ρ∗

0 , say, of ρ0. Hence ρ∗
0 < ρ0 is equivalent

to B2 − 4AC > 0 and, thus, backward bifurcation would
occur for values of ρ0 such that ρ∗

0 < ρ0 < 1. We do not
present here the explicit expression for ρ∗

0 because it is rather
cumbersome.
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