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New limits on tan β for 2HDMs with Z2 symmetry
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Abstract: In two-Higgs-doublet models with exact Z2 symmetry, putting mh ≃ 125 GeV at the align-
ment limit, the following limits on the heavy scalar masses are obtained from the conditions of unitarity
and stability of the scalar potential: mH , mA, mH+ < 1 TeV and 1/8 < tanβ < 8. The constraints from
b → sγ and neutral meson mass differences, when superimposed on the unitarity constraints, put a tighter
lower limit on tanβ depending on mH+ . It has also been shown that larger values of tanβ can be allowed
by introducing soft breaking term in the potential at the expense of a correlation between mH and the soft
breaking parameter.

1 Introduction

Extension of the Standard Model (SM) scalar sector is a common practice in constructing new physics models
to address the shortcomings of the SM. Two-Higgs-doublet models (2HDMs) [1] are amongst the simplest of
extensions that add only one extra SU(2) doublet to the SM scalar sector. The tree level value of the electroweak
ρ-parameter remains unity for these types of extensions. In a general 2HDM, however, both the doublets (Φ1 and
Φ2) can couple to each type of fermions. Consequently there will be two Yukawa matrices which, in general, are
not diagonalizable simultaneously. This will introduce new flavor changing neutral currents (FCNC) mediated
by neutral Higgses. It was shown by Glashow and Weinberg [2] and independently by Paschos [3] that Higgs
mediated FCNC can be avoided altogether if fermions of a particular charge get their masses from the vacuum
expectation value (vev) of a single scalar doublet. This prescription was realized by employing a Z2 symmetry
under which one of the doublet is odd. Then there are four different possibilities for assigning Z2 parities to the
fermions so that Glashow-Weinberg-Pascos theorem is satisfied. Following the usual convention, we shall always
call Φ2 the doublet which couples to the up-type quarks. This leads to the following four types of 2HDMs:

• Type I: all quarks and leptons couple to only one scalar doublet Φ2 ;

• Type II: Φ2 couples to up-type quarks, while Φ1 couples to down-type quarks and charged leptons (minimal
supersymmetry conforms to this category);

• Type X or lepton specific: Φ2 couples to all quarks, while Φ1 couples to all leptons;

• Type Y or flipped: Φ2 couples to up-type quarks and leptons, while Φ1 couples to down-type quarks.

Now that a light Higgs boson has been observed by the ATLAS and CMS Collaborations of the CERN Large
Hadron Collider (LHC), the time is appropriate to revisit the constraints on 2HDM parameter space arising
from the requirement of perturbative unitarity associated with the scattering amplitudes together with the
complementary constraints coming from the flavor observables. Requirement of unitarity is a consequence of
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probability conservation at the quantum level. Essentially, one takes tree level amplitudes of appropriate sets
of scattering processes, and impose the unitarity condition that the s-wave scattering amplitude |a0| < 1.
Equivalence theorem allows us to make the calculations easier by replacing the longitudinal gauge with the
corresponding Goldstone bosons. In the context of the SM, Lee, Quigg and Thacker (LQT) had put an upper
bound on the Higgs boson mass, mh < mLQT = (8π

√
2/3GF )

1/2 ∼ 1 TeV [4]. The LQT-type analyses were
later carried out to constrain the nonstandard parameter spaces for several extensions of the SM scalar sector.
Detailed analyses of these constraints in the 2HDM context already exist in the literature [5–11]. In this paper,
we study the consequences of adding two additional inputs to the existing analyses: (i) we use mh ≃ 125 GeV as
input, which was an unknown parameter earlier, and also note that the fitted values of the couplings of the Higgs
boson from the observed signal strengths into various fermion and gauge boson channels show close conformity
to the alignment limit, and (ii) the restrictions coming from two crucial flavor observables, namely, branching
ratio of b → sγ and the meson mass splittings have been superimposed on the unitarity constraints . We observe
that for a large class of 2HDM with exact Z2 symmetry, the unitarity and flavor constraints together allow a
rather restricted zone for mH+ and tanβ, thus imposing new constraints on these parameters. The limits on
tanβ are now independent of any other parameter, its upper limit coming from unitarity and the lower limit
from flavor observables. We study these constraints in all four types of 2HDMs mentioned earlier. The limits
are the strongest when the Z2 symmetry is exact, while they get diluted by the soft symmetry breaking terms.
We also comment on what happens when instead of Z2, softly broken U(1) symmetry is considered.

This paper is organized as follows: in Section 2 we discuss the 2HDM scalar potential and the relevance of the
alignment limit. Section 3 is divided into two parts. In the first part, we discuss the constraints arising from
the requirements of unitarity and stability. Conclusions obtained from this part are independent of the Yukawa
structure of the model. In the second part, we revisit the Yukawa sector dependent constraints originating
from flavor data and superimpose the result on the unitarity constraints. Finally, the important findings are
summarized in Section 4.

2 The scalar potential

The general scalar potential of a 2HDM invariant under a Z2 (Φ2 → −Φ2) symmetry can be written as [12]

V = λ1

(

Φ†
1Φ1 −

v21
2

)2

+ λ2

(

Φ†
2Φ2 −

v22
2

)2

+ λ3

(

Φ†
1Φ1 +Φ†

2Φ2 −
v21 + v22

2

)2

+λ4

(

(Φ†
1Φ1)(Φ

†
2Φ2)− (Φ†

1Φ2)(Φ
†
2Φ1)

)

+ λ5

(

Re Φ†
1Φ2 −

v1v2
2

)2

+ λ6

(

Im Φ†
1Φ2

)2

, (1)

where, the bilinear term proportional to λ5 breaks the Z2 symmetry softly. This soft breaking term, in its
conventional parametrization, is written as −m2

12(Φ
†
1Φ2 +Φ†

2Φ1). The connection between m2
12 and λ5 is given

by [13]

m2
12 =

λ5

2
v1v2 . (2)

Defining tanβ ≡ v2/v1 to be the ratio of the two vevs, we also remember that it is the combination
m2

12/(sinβ cosβ), not m2
12 itself, which controls the nonstandard masses [14]. In view of these facts, λ5, rather

than m2
12, constitutes a convenient parameter that can track down the effect of soft breaking. Note that, unlike

the inert case, Eq. (1) implicitly assumes that the Z2 symmetry is also broken spontaneously, i.e., both the
doublets receive vevs. In this article, we shall only consider 2HDMs where the value of tanβ is nonzero and
finite. We have also assumed that all the potential parameters are real, i.e., CP symmetry is exact in the scalar
potential. The last assumption allows us to define electrically neutral mass eigenstates which are also eigenstates
of CP. Here there will be a total of five physical scalars: a pair of CP-even scalars (h and H with mH > mh),
one CP-odd scalar (A) and a pair of charged scalars (H±). For the transition into the mass basis, one needs to
rotate the original fields in Eq. (1) by an angle β in the charged and the CP-odd sectors, whereas, the rotation
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angle involved in the CP-even sector is denoted by α. The latter angle is defined through the relation

tan 2α =
2
(

λ3 +
λ5

4

)

v1v2

λ1v21 − λ2v22 +
(

λ3 +
λ5

4

)

(v21 − v22)
. (3)

Note that there were eight parameters to start with: v1, v2 and 6 lambdas. One can trade v1 and v2 for
v =

√

v21 + v22 and tanβ. All the lambdas except λ5 may be traded for 4 physical Higgs masses and α. The
relations between these two equivalent sets of parameters are given below :

λ1 =
1

2v2 cos2 β

[

m2
H cos2 α+m2

h sin
2 α− sinα cosα

tanβ

(

m2
H −m2

h

)

]

− λ5

4

(

tan2 β − 1
)

, (4a)

λ2 =
1

2v2 sin2 β

[

m2
h cos

2 α+m2
H sin2 α− sinα cosα tanβ

(

m2
H −m2

h

)]

− λ5

4

(

cot2 β − 1
)

, (4b)

λ3 =
1

2v2
sinα cosα

sinβ cosβ

(

m2
H −m2

h

)

− λ5

4
, (4c)

λ4 =
2

v2
m2

H+ , (4d)

λ6 =
2

v2
m2

A . (4e)

Among these, v = 246 GeV is already known and if it is assumed that the lightest CP-even Higgs is what
has been observed at the LHC, then mh = 125 GeV is also known. The rest of the parameters need to be
constrained from theoretical as well as experimental considerations.

The first simplification occurs if one keeps in mind that the experimental values of the Higgs signal strengths
into different decay channels are increasingly leaning towards the corresponding SM predictions [15,16]. In the
2HDM context, this implies the alignment condition [14]

sin(β − α) ≈ 1 , (5)

which means, h will have the exact same tree-level couplings with the vector bosons and fermions as in the SM.
In view of the recent global fits for 2HDMs using the LHC Higgs data, Eq. (5) is a reasonable assumption [17–22].

Next, one has to ensure that there should not exist any direction in the field space along which the potential
of Eq. (1) becomes infinitely negative, i.e., the potential is bounded from below. The necessary and sufficient
conditions for this can be found to be [23,24]

λ1 + λ3 > 0 , (6a)

λ2 + λ3 > 0 , (6b)

2λ3 + λ4 + 2
√

(λ1 + λ3)(λ2 + λ3) > 0 , (6c)

2λ3 +
λ5 + λ6

2
− |λ5 − λ6|

2
+ 2

√

(λ1 + λ3)(λ2 + λ3) > 0 . (6d)

To obtain the constraints from tree-unitarity, we construct an S-matrix using different two-body states to label
its different rows and columns. The ℓ = 0 partial wave amplitudes for different 2 → 2 scattering processes
constitute the elements of this S-matrix. The explicit expressions for the eigenvalues of this matrix are listed
below [5–8]:

a±1 = 3(λ1 + λ2 + 2λ3)±

√

9(λ1 − λ2)2 +

(

4λ3 + λ4 +
λ5 + λ6

2

)2

, (7a)

a±2 = (λ1 + λ2 + 2λ3)±
√

(λ1 − λ2)2 +
1

4
(2λ4 − λ5 − λ6)

2
, (7b)
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Figure 1: Allowed region from unitarity and stability for exact Z2 symmetry. In the right panel, the dark (purple)
shaded region is excluded from direct search [25].

a±3 = (λ1 + λ2 + 2λ3)±
√

(λ1 − λ2)2 +
1

4
(λ5 − λ6)

2
, (7c)

b1 = 2λ3 − λ4 −
1

2
λ5 +

5

2
λ6 , (7d)

b2 = 2λ3 + λ4 −
1

2
λ5 +

1

2
λ6 , (7e)

b3 = 2λ3 − λ4 +
5

2
λ5 −

1

2
λ6 , (7f)

b4 = 2λ3 + λ4 +
1

2
λ5 −

1

2
λ6 , (7g)

b5 = 2λ3 +
1

2
λ5 +

1

2
λ6 , (7h)

b6 = 2(λ3 + λ4)−
1

2
λ5 −

1

2
λ6 . (7i)

The requirement of tree-unitarity then restricts each of the above eigenvalues as

|a±i |, |bi| ≤ 16π . (8)

Now it is the time to investigate how the constraints from unitarity and stability restrict the parameter space
in the alignment limit defined by Eq. (5).

3 Constraints on the 2HDM parameter space

To begin with, we consider the case when the Z2 symmetry is exact in the scalar potential i.e., λ5 = 0. For this,
we have generated millions of random points in the {tanβ, mH , mA, mH+} space. The individual parameters
have been varied in the following range:

tanβ ∈ [0.1, 100] , mH ∈ [125, 2000] , mA ∈ [0, 2000] , mH+ ∈ [0, 2000] . (9)

Those points which successfully negotiate the unitarity and stability bounds have been plotted in Fig. 1. Some
noteworthy features are listed below :

• From the left panel, one can read the limit on tanβ, 1/8 < tanβ < 8.

• Strong correlation exists between the upper limit of mH and tanβ.

• Limits on the masses are, mH , mA, mH+ < 1 TeV.
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Figure 2: Relaxation of the unitarity and stability constraints on tanβ in the presence of soft breaking. In the
right panel, the vertical width of the of the tail in the region where tanβ is much away from unity is caused by
the variation of λ5 in the range [−15, 15].

Figure 3: Effect of soft breaking on the constraints on the nonstandard masses. The (light blue) shaded region in
the rightmost panel represents the combined allowed region from direct search and the diphoton signal strength
at 95% C.L.

The reason for the above features can be traced back to the eigenvalues of Eq. (7). First two constraints for
boundedness in Eq. (6) can be combined into

λ1 + λ2 + 2λ3 > 0 . (10)

This, then together with the condition |a±1 | < 16π, implies

0 < λ1 + λ2 + 2λ3 <
16π

3
, (11)

⇒ 0 <

(

m2
H − 1

2
λ5v

2

)

(tan2 β + cot2 β) + 2m2
h <

32πv2

3
, (12)

where the last expression is obtained from the previous one by using Eq. (4) in the alignment limit. Keeping
in mind that mH > 125 GeV, this will put a limit on tanβ (as well as cotβ) when λ5 = 0. Since the minimum
value of (tan2 β + cot2 β) is 2 when tanβ = 1, the maximum possible value of mH occurs at tanβ = 1. In
summary, the inequality (12) explains the tanβ dependent bound on mH as depicted in the left panel of Fig. 1.

Eq. (12) also implies that the restriction on tanβ will be lifted for 1/2λ5v
2 > (m2

H)min = (125 GeV)2. Once
this condition is satisfied, m2

H will have the chance to saturate to 1/2λ5v
2 making the difference between them

to vanish in Eq. (12). In fact, to a very good approximation, one can use

m2
H ≈ 1/2λ5v

2 (13)

for tanβ > 5.
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To understand the restrictions on mA and mH+ , we use the triangle inequality to note the following :

|b1 − b3| ≡ 3|λ6 − λ5| < 32π , ⇒ |m2
A − 1

2
λ5v

2| < 16πv2

3
, (14a)

|b6 − b3| ≡ 3|λ4 − λ5| < 32π , ⇒ |m2
H+ − 1

2
λ5v

2| < 16πv2

3
. (14b)

Because of Eqs. (14a) and (14b) one expects to put limits on mA and mH+ respectively, when λ5 = 0. Addi-
tionally, note that due to the inequality

|b1 − b6| ≡ 3|λ6 − λ4| < 32π , ⇒ |m2
A −m2

H+ | <
16πv2

3
, (15)

it is expected that the splitting between mA and mH+ will be always restricted in a 2HDM. It is also interesting
to note that the conclusions obtained from Eqs. (14a), (14b) and (15) do not depend on the imposition of the
alignment condition.

Next we shall investigate the implications of the soft breaking parameter on these constraints. We have varied
λ5 in the range [−15, 15] for this purpose. From Eq. (12) one can observe that the space for tanβ is squeezed
further if λ5 < 0 but the bound is relaxed if λ5 > 0. This feature emerges from the left panel of Fig. 2. One
can also see from Eq. (12) that m2

H must follow 1/2λ5v
2 if tanβ moderately deviates from unity. This feature

is reflected by the horizontal tail in the right panel of Fig. 2 on both sides of the peak. The vertical width of
the tail is caused by the variation of λ5 in the range [−15, 15]. On the other hand, from Eqs. (14a), (14b) and
(12), it should be noted that the upper bounds on the nonstandard scalar masses will be relaxed for λ5 > 0 but
will get tighter for λ5 < 0. Fig. 3 reflects these features where one can see that this dependence is rather weak.
It is worth mentioning at this point that if one uses a softly broken U(1) symmetry instead of the usual Z2

symmetry, the soft breaking parameter gets related to the pseudoscalar mass as m2
A = 1/2λ5v

2. Consequently,
the correlation between mH and λ5 in the leftmost panel of Fig. 3 transforms into the degeneracy between
mH and mA. Detailed analysis of the scalar sector, for the softly broken U(1) scenario, has been carried out
in [26,27].

It is also important to note that the production as well as the tree-level decay widths of h remain unaltered from
the corresponding SM expectations due to the imposition of alignment limit of Eq. (5). But the loop induced
decay modes of h, such as h → γγ and h → Zγ, will pick up additional contributions due the presence of the
charged scalar in loops. For example, the diphoton signal strength (µγγ), in general, depends on both λ5 and
mH+ [13]. The current measurement by CMS gives µγγ = 1.14+0.26

−0.23 [28], whereas ATLAS measures µγγ to be
1.17 ± 0.27 [29]. In addition to this, the direct search limit of mH+ > 80 GeV [25] should also be taken into
account. Considering all of these experimental constraints, the allowed region at 95% C.L. has been shaded (in
light blue) in the rightmost panel of Fig. 3. Only those points that lie within the shaded region survive both
the theoretical and experimental constraints.

3.1 Yukawa sector and flavor constraints

Now we shall concentrate on the constraints on the charged scalar mass (mH+), imposed by the measured values
of b → sγ branching ratio [30] and neutral meson mass differences (∆M) [31]. Since we are concerned with the
quark sector only, the constraints will be the same for Type I and Type X models. The same is true for Type II
and Type Y models. In the following, we spell out the relevant parts of the charged scalar Yukawa interaction:

L
(I or X)
H+ =

[√
2H+

v
cotβ

{

ūR (DuV ) dL − ūL (V Dd) dR

}

+ h.c.

]

, (16a)

L
(II or Y)
H+ =

[√
2H+

v

{

cotβūR (DuV ) dL + tanβūL (V Dd) dR

}

+ h.c.

]

, (16b)
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Figure 4: Constraints on tanβ and the charged Higgs mass from unitarity and flavor physics. The left panel
corresponds to Type I and X and the right panel to Type II and Y scenarios. The lower horizontal dark (purple)
strip in both the panels corresponds to the direct search limit of 80 GeV [25]. The ligther shades represent
allowed regions from individual flavor observables. The scattered points are allowed from unitarity and stability
for 2HDMs with exact Z2 symmetry.

where, V is the CKM matrix and Du,d are diagonal mass matrices in the up- and down-quark sectors respectively.
In writing Eq. (16), we have suppressed the flavor indices. Thus u and d should be interpreted as three element
column matrices.

For the process b → sγ, the major new physics contributions come from charged scalar loops. We have added
the new physics contribution to the SM one at the amplitude level and therefore have taken the interference
into account. The branching ratio is then compared with the experimental value, (3.55± 0.26)× 10−4 [30], to
obtain the allowed region at 95% C.L. in Fig. 4. As can be seen from Eq. (16b), for Type II and Y models, in
the charged Higgs Yukawa interaction, the up-type Yukawa coupling is multiplied by cotβ while the down-type
Yukawa is multiplied by tanβ. Their product is responsible for setting tanβ-independent limit1 mH+ > 320
GeV for tanβ > 1 [33–35]. This feature has been depicted in the right panel of Fig. 4. In Type I and X models,
on the other hand, each of these couplings picks up a cotβ factor. This is why there is essentially no bound on
mH+ for tanβ > 1 in these models [34]. This character of Type I and X models emerges from the left panel of
Fig. 4.

The dominant new physics contributions to neutral meson mass differences come from the charged scalar box
diagrams. Note that, the constraint arising from ∆M in the mH+ -tanβ plane, is slightly stronger than that
from the precision measurement of the Z → bb̄ branching ratio [35]. In Fig. 4, allowed regions have been shaded
assuming that the new physics contributions saturate the experimental values of ∆M [31]. Since the amplitudes
for the new box diagrams receive prevailing contributions from the up-type quark masses which, for all four
variants of 2HDMs, comes with a cotβ prefactor, the overall charged scalar contribution to the amplitude goes
as cot4 β due to the presence of four charged scalar vertices in the box diagram. Not surprisingly, ∆M offers a
stronger constraint than b → sγ for tanβ < 1 because, in this region, the new physics amplitude for the latter
goes as cot2 β.

Things become more interesting when the above flavor constraints are superimposed on top of the constraints
from unitarity and stability. Most stringent constraints are obtained when Z2 symmetry is exact in the scalar
potential, i.e., λ5 = 0. In Fig. 4, the scattered points span the region allowed by the combined constraints
of unitarity and stability for the case of exact Z2 symmetry. Only those points which lie within the common
shaded region survive when all the constraints are imposed. For 2HDMs of all four types, one can read the

1Recently this bound has been changed to m
H+ > 480 GeV using the NNLO result along with the updated experimental

value [32]. This means that the b → sγ boundary on the right panel of Fig. 4 will be shifted upwards slightly. But this will hardly
modify the lower bound on tanβ which mainly comes from ∆M .
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bound on tanβ as

0.5 < tanβ < 8 . (17)

However, in order to allow a lighter charged scalar in the ballpark of 400 GeV or below, one must require
1 < tanβ < 8. It should be remembered that, the lower bound on tanβ mainly comes from the flavor data,
whereas the upper limit, for the case of exact Z2 symmetry, is dictated by unitarity and stability. In the presence
of a soft breaking parameter, the upper bound will be lifted allowing tanβ to take much larger values at the
expense of a strong correlation between the soft breaking parameter and mH as depicted by Eq. (13).

4 Conclusions

In this paper, we have revisited the constraints from tree-unitarity and stability in the context of 2HDMs. The
observed scalar at LHC has been identified with the lightest CP-even scalar of the model. The alignment limit
has been imposed in view of the conformity of the LHC Higgs data with the SM predictions. These are the new
informations that became available only after the Higgs discovery. If the Z2 symmetry is exact in the potential,
it is found that all the nonstandard masses are restricted below 1 TeV from unitarity with the upper limit on
mH being highly correlated to tanβ. The value of tanβ is also confined within the range 1/8 < tanβ < 8 from
unitarity and stability. The constraints from flavor data severely restrict the region with tanβ < 1. Therefore,
for an exact Z2 symmetry, tanβ is bounded within a very narrow range of 1 < tanβ < 8 when a light charged
scalar with mass around 400 GeV is looked for.

In the presence of an appropriate soft breaking parameter the upper bound on tanβ will be diluted. However,
for large values of tanβ, the unitarity and stability conditions will render a strong correlation between the soft
breaking parameter and mH as appears in Eq. (13). It is also worth noting that the value of µγγ can play a
crucial role in the presence of soft breaking. For example, if µγγ is measured to be consistent with the SM
expectation with 5% accuracy then one can conclude m2

H+ ≈ 1/2λ5v
2 [13] for any value of tanβ. Thus, for

large values of tanβ one may expect m2
H ≈ m2

H+ ≈ 1/2λ5v
2. In this limit, the heavier nonstandard scalars

truly decouple from the low energy observables. Thus, as has been emphasized in [13], proper decoupling of the
nonstandard scalars necessitates the presence of a soft breaking term in the scalar potential.

To sum up, when flavor constraints are superimposed on the constraints from unitarity and stability, the value
of tanβ is restricted within a very narrow range of 1 < tanβ < 8 for 2HDMs with exact Z2 symmetry. Larger
values of tanβ can be allowed by introducing suitable soft breaking parameter in the scalar potential, but the
theoretical and experimental constraints impose certain correlations between nonstandard masses and the soft
breaking parameter. This makes the theory much more predictive in the large tanβ region.
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