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We investigate how far a new physics scenario affecting primarily the third generation fermions can
ameliorate the tension between B-decay observables and Standard Model expectations. Adopting
a model-independent approach, we find that among the three observables that show signs of such
a tension, viz. the branching fractions for B+ → τν, Bd → D(D∗)τν, and the like-sign dimuon
anomaly in neutral B decays, the first two can be explained adequately, while there is only a marginal
improvement for the third. As a spin-off, it is shown that one can also accommodate a change in the
branching fraction of the Higgs boson to a τ lepton pair from the SM expectation, if such a change
is established in future data.
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I. INTRODUCTION

While the purported discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] seems to vindicate the
Standard Model (SM), there are enough reasons to believe that the latter is but an effective theory, valid only up to
a certain energy scale, with a more complete theory lurking beyond that. One of the major reasons for such a belief
is the fine-tuning problem associated with such an elementary scalar; also of considerable import are issues such as
the existence of the dark matter, or the baryon asymmetry in the universe.
This acts as a strong motivation to look for signals, both direct and indirect, of such a new theory. While direct

signals very often involve production of new particles, the indirect signals will, most probably, be manifested as
modifications to SM observables by new effective operators, or even the same operators as in the SM, but with
modified Wilson coefficients.
B meson observables have constituted a favourite hunting ground for indirect signals. Over the years, several

experiments, including B-factories, Tevatron, and even the LHC, have reported observables that are not in good
agreement with the SM. While the tension is not so overwhelming as to claim unquestioned evidence of New Physics
(NP), the pattern is interesting. Here, one must remember to tackle the theoretical uncertainties carefully; some of
the discrepancies, like the longitudinal polarization anomaly in the decay of a B meson to two vector mesons, vanished
because of a more careful reappraisal of the SM effects.
Let us begin by considering a few observables which are not in full conformity with the SM expectations:

• the large branching ratio of B → D(D∗)τν, with a combined tension of 3.4σ [3];

• the large branching ratio of B+ → τ+ν, with a tension of 1.6σ [4] 1;

• the like-sign dimuon asymmetry, with a tension of 3.9σ [6].

It is interesting to note that the first two involve a τ lepton in the final state. This motivates us to ask if there exists
one or more new effective operators involving the b quark and the τ lepton. Such a possibility was raised in Ref. [7],
and further investigated in Refs. [8–13]. One might feel tempted to add to this list a hint of another anomaly: the
branching ratio of H → τ+τ− seems to be a bit on the lower side than that expected in the SM [1].

∗Electronic address: debajyoti.choudhury@gmail.com
†Electronic address: dilipghoshjal@gmail.com
‡Electronic address: anirban.kundu.cu@gmail.com
1 The tension has come down very recently; it was about 2.8σ before the publication of the latest Belle result [5].
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The lowest dimensional operators of interest can, generically, be expressed as (bΓA s) (τ ΓB τ) where ΓA,B are
appropriate combinations of the Dirac matrices. As shown in Ref. [9], this four-fermion operator is relatively uncon-
strained. This leads to a new contribution to the Bs–Bs mixing amplitude, with a nonzero absorptive part: cutting
the intermediate τ propagators can yield an on-shell τ -pair. Thus, one has a new contribution to ∆Γs, the difference
in the widths of the two Bs mass eigenstates, which, in turn, ameliorates the apparent discrepancy in the like-sign
dimuon asymmetry. However, the strength of any such operator is ultimately constrained by the mass difference ∆Ms

of the Bs mass eigenstates.
Considering the fact that there is hardly any tension in the data involving electrons or muons in the final state

(except the dimuon anomaly, to which we will come shortly), one might feel tempted to invoke one or more effective
operators involving only third generation quarks and leptons. While such an effective operator based study was
undertaken in Refs. [10, 13], the constraints on ∆Ms were not correlated with those coming from the decay width
difference ∆Γs; they were assumed to be independent numbers. The authors of Ref. [11] discussed the effectiveness
of ∆Ms as a possible constraint on the parameter space.
In this paper, we adopt a different approach. To begin with, we posit a single effective operator involving a

third-generation quark current and a third-generation lepton current. As it involves only third-generation fields,
the constraints on the Lorentz structure for the same, or on the magnitude of the corresponding Wilson coefficient is
relatively weak. For example, just restricting the new couplings to the perturbative regime ensures that Υ(1S) → τ+τ−

does not receive a significant contribution over and above the SM amplitude, which is electromagnetic in nature. We
will, however, not venture to discuss any particular models that might predict such an interaction, and adopt, instead,
a bottom-up approach.
A theory of flavour would, generically, dictate that such an operator would be written in the weak basis. On the

breaking of the electroweak symmetry, the quark fields would need to be rotated to the mass basis. This leads to a
plethora of new operators, related to the original through the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.
Included, amongst others, are those leading to b → sτ+τ− and b → sνν (the lepton fields are not rotated, so we
will always write ν for ντ ). We will see that, even with a moderate NP scale ∼ 1 TeV, the constraints from ∆Ms

are so strong for vector and axial-vector ({V,A}) operators that the effects on ∆Γs and Bs → τ+τ− are bound to
be unobservably small. Thus, the explanation of the dimuon anomaly must lie elsewhere, while this scheme can
successfully explain the charged-current decays. The outlook is better if the effective operators are of scalar and
pseudoscalar ({S, P}) variety. Indeed, such a scenario predicts a rather strong enhancement of the branching fraction
of Bc → τν over its SM prediction. As for the tensor current operators, the corresponding Wilson coefficients are
severely constrained [11] from radiative decays like b→ sγ, and so we will not consider them any further.
The rest of the paper is arranged as follows. In the next section, we will briefly go through the existing data. In

Section III, we will discuss the new operators; first, the {S, P} type, and then the {V,A} type. In Section IV, we show
how these operators may help in bringing down the tension with the SM. We summarize and conclude in Section V.

II. EXISTING CONSTRAINTS

A. B → D(D∗)τν

The importance of studying the B → D(D∗)τν modes for a possible signal of new physics has already been pointed
out in the literature [14]. The BaBar Collaboration [3] measured the branching fractions for these two modes, and
they are above the SM predictions. They are also not consistent with a type II two-Higgs doublet model (such as the
minimal supersymmetric extension of the SM). The implications of the data as a possible hint of physics beyond the
SM have been studied in [12].
It is particularly useful to consider the ratios R(D) and R(D∗), defined as

R(D(∗)) =
Br(B → D(∗)τν)

Br(B → D(∗)ℓν)
(1)

as these are largely free of the uncertainties—e.g., those in the form factors—that exclusive modes are often prey to.
The SM predictions are

R(D) = 0.297± 0.017 , R(D∗) = 0.252± 0.003 , (2)

while the BaBar Collaboration quotes [3]

R(D) = 0.440± 0.058± 0.042 , R(D∗) = 0.332± 0.024± 0.018 . (3)
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It should be noted that a recent calculation [16] in unquenched lattice QCD gives, in the SM, R(D) = 0.316± 0.012±
0.007. This is consistent with the earlier SM prediction, but cannot explain the tension with the data2.
Using Eqs. (2) and (3), and adding all errors in quadrature, we get

R(D)exp
R(D)SM

= 1.481× (1± 0.173) ,
R(D∗)exp
R(D∗)SM

= 1.317× (1± 0.091) . (4)

B. B → τν and Bc → τν

The partial decay width B → τν, in the SM, is given by

Γ(B → τν) =
1

8π
G2

F |Vub|2f2
Bm

2
τmB

(

1− m2
τ

m2
B

)2

. (5)

The world average is [4]

Br(B → τν) = (11.5± 2.3)× 10−5 , (6)

while the theoretical prediction is

Br(B → τν)SM =
(

7.57+0.98
−0.61

)

× 10−5 , (7)

which gives a tension at the level of 1.6σ [4]. The theoretical uncertainty comes from those in the decay constant
fB and the CKM matrix element Vub. While the discrepancy has eased considerably, from 2.8σ to 1.6σ, after the
publication of the new Belle result [5], there is still a non-negligible tension between the value of |Vub| determined from
this decay, and that determined indirectly from the sides of the unitarity triangle, or an average of direct inclusive
(B → Xuℓν) and exclusive (B → πℓν) measurements.
The discrepancy has led to several attempts in the literature to explain this as a possible NP signal. However, the

explanations based on the existence of only a charged Higgs boson of type-II are ruled out at 95% confidence limit
from the combined analysis of processes like b→ sγ, Z → bb, B0−B0 mixing [17]; the goodness-of-fit is hardly better
than the fit with the SM alone. Models like R-parity violating supersymmetry fare much better and give a satisfactory
explanation of the excess [18]. Note that all those analyses were performed using the pre-2012 data.
A similar expression as in Eq. (5) holds for Bc → τν. For numerical evaluation, one might use

fBc
= (395± 15) MeV , τBc

= 0.458± 0.030 ps . (8)

C. Bs–Bs mixing: ∆Ms, ∆Γs, βs and φs

While there are no apparent tensions in this sector at present, the data, as we will soon see, acts as a very tight
constraint on NP operators. The mass splitting between two Bs mass eigenstates, ∆Ms ≈ 2|M12s|, is extremely
well-measured [19], namely

∆Ms = 17.719± 0.043 ps−1 . (9)

This agrees very well with the SM expectation [20], viz.

∆Ms (SM) = (17.3± 2.6) ps−1 , (10)

and acts as a very tight constraint on NP models. There are two relevant phases in the Bs–Bs system. The first one,
the mixing phase, is defined as

βs = arg

(

− VcbV
∗
cs

VtbV ∗
ts

)

, (11)

2 The Belle collaboration measurements[15] viz.

R(D) = 0.70+0.19+0.11
−0.18−0.09 , R(D∗) = 0.47+0.11+0.06

−0.10−0.07 .

while being even further away from the SM expectations, nonetheless are consistent with these as well as the BaBar results. This
agreement, though, is but a consequence of the large error margins.
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while the second one, responsible for semileptonic asymmetries, is given by

φs = arg

(

−M12s

Γ12s

)

. (12)

The SM predictions [19] are

φs = 0.0041± 0.0007 , −2βs = −0.038± 0.002 . (13)

The experimental numbers are

− 2βs = −0.040+0.090
−0.085 (14)

from direct determination, and

− 2βs = −0.0363+0.0016
−0.0015 (15)

from an indirect global fit [19]. We will use the former number.
Note that Bs lifetime is rather ill-defined, as the two mass eigenstates have a significant lifetime difference, namely

τBsL
= 1.408± 0.017 ps , τBsH

= 1.626± 0.023 ps . (16)

Averaging over the two, we have

τBs
(average) =

2

ΓL + ΓH
= 1.509± 0.012 ps , (17)

which should be compared with τBd
= 1.519± 0.007 ps. Thus,

τBs

τBd

= 0.993± 0.009 , (18)

while the SM expectation for this ratio lies between 0.99 and 1.01 [19].
The width difference ∆Γs is given by

∆Γs = 2 |Γ12s| cos(φs) . (19)

While the SM predicts ∆Γs > 0, there was a sign ambiguity earlier in its determination. Recently LHCb, from the
decay Bs → J/ψK+K−, found ∆Γs > 0 with a 4.7σ confidence level [21]. The experimental number, an average over
various measurements [19],

∆Γs = 0.095± 0.014 ps−1 (20)

is to be compared with the SM prediction [20]

∆Γs (SM) = 0.087± 0.021 ps−1 . (21)

D. The like-sign dimuon asymmetry

The like-sign dimuon asymmetry, defined as

Ab
sl =

N(µ+µ+)−N(µ−µ−)

N(µ+µ+) +N(µ−µ−)
, (22)

and measured with 9.0 fb−1 of data at the DØ Collaboration is [6]

Ab
sl = (−7.87± 1.96)× 10−3 . (23)

This can be expressed as individual flavour-specific (fs) semileptonic asymmetries coming from Bd and Bs:

Ab
sl = (0.595± 0.022) adfs + (0.405∓ 0.022) asfs , (24)
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where the numbers in the parentheses are the production fractions for Bd and Bs. The SM expectations are

adfs = (−4.1± 0.6)× 10−4 , asfs = (1.9± 0.3)× 10−5 , (25)

which give the SM prediction

(Ab
sl)SM = (−2.4± 0.4)× 10−4 . (26)

Comparing Eqs. (23) and (26), one finds a 3.9σ discrepancy between theoretical prediction and experiment. adfs has

already been measured by BaBar and Belle; the average [19]

adfs = (−3.3± 3.3)× 10−3 (27)

is consistent with the SM. This gives an indirect prediction for asfs, viz.

asfs = (−1.52± 1.04)× 10−2 , (28)

where the error has been symmetrized. We have neglected the correlation between adfs and asfs, but have taken

the uncertainties in the production fractions into account. Recently, the DØ Collaboration directly measured asfs =

(−1.08±0.72 (stat)±0.17 (syst))×10−2 [22] which is also consistent with the SM expectation. The HFAG collaboration
averages over several direct measurements of asfs and quotes [19]

asfs = (−1.05± 0.64)× 10−2 (29)

but this has a nonzero correlation with adfs.
This gives a weak constraint on φs:

tanφs = asfs
∆Ms

∆Γs
. (30)

If there is some NP contributing to both M12s and Γ12s, one can parametrize the NP contribution as

M12 = MSM
12 +MNP

12 ≡ MSM
12 RM exp(iφM ) ,

Γ12 = ΓSM
12 + ΓNP

12 ≡ ΓSM
12 RΓ exp(iφΓ) ,

(31)

resulting in [8]

φs = φSM
s + φM − φΓ . (32)

Thus, there are two ways to have a large asfs; either a large contribution to ∆Γs or a large φs ∼ π/2. But φSM
s ≈ 0

and φM ≡ −2βs is known to be small, so a large φs necessarily warrants a large φΓ, and hence a large contribution
to Γ12.
Taking all the existing constraints into account, it was shown [7, 8, 11] that b→ sτ+τ− is a viable option to generate

a large Γ12. However, such a new channel decreases the lifetime of Bs compared to Bd; moreover, one does not expect
Br(Bs → τ+τ−) to be more than 3-3.5% [11]. The inclusive mode B(Bd → Xsττ) is constrained to be less than 5%
[23], while BaBar gives a 90% limit [24]

B(B+ → K+τ+τ−)|q2>14.23 GeV2 < 3.3× 10−3 . (33)

However, not all Lorentz structures that contribute to a new absorptive part in Bs–Bs mixing contribute simultane-
ously to Bs → τ+τ− or B+ → K+τ+τ−. At the same time, there can be significant long-distance effects in Bs–Bs

mixing, through meson loops, and they can have a non-negligible contribution in ∆Γs [25, 26]. While we will discuss
these issues in detail later, the crucial point to note is that the NP contributing to Γ12 should, in general, contribute
to M12 also, and the mass difference ∆Ms is so tightly constrained that this leaves only a very small room for any
NP.

E. Di-tau suppression

Looking for the SM Higgs in the H → ττ mode, the CMS collaboration has failed to see [1] an unambiguous excess
over the background. Indeed, for the preferred mass of mH = 125 GeV (corresponding to the much-touted diphoton
and four-lepton excesses), it is only able to impose a 95% C.L. upper limit on the ditau excess. With the result being
similar for the ATLAS collaboration [2] as well, the pp→ H → ττ cross-section is, in fact, consistent with zero, viz.,
σ/σSM = 0.100+0.714

−0.699 [27].



6

Observable SM Expt

−2βs −0.038± 0.002 −0.040+0.090
−0.085

τBs
1.509 ± 0.012 ps

τBs
/τBd

0.99 - 1.01 0.993 ± 0.009

∆Ms ≈ 2|M12s| (17.3± 2.6) ps−1 (17.719 ± 0.043) ps−1

∆Γs ≈ 2|Γ12s| cos φs (0.087 ± 0.021) ps−1 (0.095 ± 0.014) ps−1

Ab
sl (−2.4± 0.4) × 10−4 (−7.87± 1.96) × 10−3

ad
fs ≡ ad

sl (−4.1± 0.6) × 10−4 (−3.3± 3.3) × 10−3

as
fs ≡ as

sl (1.9± 0.3) × 10−5 (−1.05± 0.64) × 10−2

R(D) 0.297 ± 0.017 0.440 ± 0.072

R(D∗) 0.252 ± 0.003 0.332 ± 0.030

Br(B+ → τ+ν) (7.57+0.98
−0.61)× 10−5 (11.5± 2.3) × 10−5

TABLE I: Inputs used in our analysis. For details, see text.

F. Numbers used for the analysis

Apart from the numbers shown in the previous subsections, a summary of which is given in Table 1, we also use
the following for our analysis:

mB+ = mBd
= 5.279 GeV , τB+ = 1.641 ps , τBd

= 1.519 ps , mBs
= 5.367 GeV , (34)

and

|Vtd| = (8.67+0.29
−0.31)× 10−3 , |Vts| = 0.0404+0.0011

−0.0005 , |Vcb| = 0.0412+0.0011
−0.0005 ,

|Vub| = (3.49± 0.13)× 10−3 , γ ≈ arg(V ∗
ub) = 77◦ . (35)

Note that |Vts| is measured from Bs–Bs mixing, but if we talk about new physics in the mixing and hence ∆Ms,
we should, instead, use |Vts| as determined from the unitarity constraints. The central value as determined from the
unitarity is 0.0404; purely from ∆Ms measurement, this comes out to be 0.0429± 0.0026. The error margin in γ is
not important for our analysis, and so we use the central value [19]. Note that only the difference of γ and the weak
phase coming in the NP amplitude is relevant for our purpose; the latter is a priori unknown and must be treated as
a free parameter of the theory. For the evaluation of ∆Ms, we have used the unquenched lattice value

fBs

√

BBs
= 248± 15 MeV . (36)

III. THE NEW EFFECTIVE OPERATORS

Let us, now, consider a set of possible operators involving third-generation fermions, satisfying both Lorentz and
gauge invariance. These might be of the form

OS = A(Q3Ld3R)(e3RL3L) +B(Q3Lu3R)(e
c
3RL

′c
3L) + h.c. (37)

with L′
3 ≡ iσ2L3, or

OV = C
[

Q3Lγ
µτaQ3L

] [

L3LγµτaL3L

]

, (38)

where Q3, L3, u3, d3, and e3 stand for the doublet quark, doublet lepton, singlet up-type, singlet down-type, and
singlet charged lepton of the third generation respectively. In view of the experimental measurements that we seek
to address, we limit ourselves, here, to only those operators that admit charged-current interactions. Furthermore,
we do not consider tensor operators as their Wilson coefficients are very tightly constrained from radiative decays. In
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terms of component fields, we can write the scalar-pseudoscalar operators as

OS = A
[

(bPRb)(τPLτ) + (tPRb)(τPLν) + (bPLb)(τPRτ) + (bPLt)(νPRτ)
]

+B
[

(tPRt)(τPLτ)− (bPLt)(νPRτ) + (tPLt)(τPRτ)− (tPRb)(τPLν)
]

,

= A
[

(bPRb)(τPLτ) + h.c.
]

+B
[

(tPRt)(τPLτ) + h.c.
]

+(A−B)
[

(tPRb)(τPLν) + (bPLt)(νPRτ)
]

=
1

2
A
[

(bb)(ττ)− (bγ5b)(τγ5τ)
]

+ similar terms . (39)

Eq. (39) shows that the neutral current operators have a coefficient different from that for the charged current
operators. In fact, there are two neutral current operators now, one involving scalar currents and the other involving
pseudoscalar currents. While we will discuss later the consequences of such an operator structure, note that the τ
Yukawa coupling can, in principle, be significantly modified by a top loop. Corrections to the Yukawa couplings of
other third generation fermions are negligible.
In a similar vein,

OV = C
[

(bγµPLt)(νγµPLτ) + (tγµPLb)(τγµPLν)

+
1

2

(

bγµPLb− tγµPLt)(τγµPLτ − νγµPLν)
]

. (40)

To make explicit the higher-dimensional nature of the couplings, we denote

A = a/Λ2 , B = b/Λ2 , C = c/Λ2 , (41)

where a, b, and c are dimensionless couplings.
If Eqs. (39) and/or (40) are all we have, the phenomenology is straightforward, and only a subset of that we would

consider below. One might think that Υ → ττ will put a tight constraint on the coefficients, but, in actuality, that
constraint is far too weak. The reason is that the SM decay is an electromagnetic one, and the width is given by [28]

ΓΥ(1S)→ℓℓ = 4α2Q2
b M

−2
Υ |R(0)|2 (1 + 2x)

√
1− 4x , (42)

where x =M2
ℓ /M

2
Υ and R(0) is the radial part of the non-relativistic wave function at the origin.

A. The rotation

Assuming that the operators in question have arisen on account of some flavour physics operative at scales higher
than the weak scale, we now put forward the Ansatz that the fields in Eqs. (39) and (40) are in the weak basis,
and should be rotated to the stationary or mass basis. Let us, for simplicity, assume that right-chiral fields are not
rotated, and for the left-chiral fields,

bwk → x1d+ x2s+ x3b , twk → y1u+ y2c+ y3t , (43)

where the right-hand side fields are in the mass basis.
If U and D matrices are responsible for the rotation of T3 = +1/2 and T3 = −1/2 fields from the weak basis to the

mass basis, so that the CKM matrix V = U†D, one notes that (x1, x2, x3) and (y1, y2, y3) are just the third rows of
D and U respectively. If we assume the rotation matrices to be almost diagonal, the only constraint is

y∗3x3 ≈ Vtb . (44)

As for other combinations, we can, at most, use order-of-magnitude arguments to yield

y∗3x1 ∼ Vtd , y
∗
3x2 ∼ Vts , y

∗
2x3 ∼ Vcb , y

∗
1x3 ∼ Vub , (45)

although there can be significant deviations. Note that this is a rather conservative constraint and one can build
models to bypass this. However, one has to be extremely careful about constraints coming from flavour physics, in
particular those involving fermions of the first two generations. Furthermore, such models involve some degree of
fine-tuning between the rotations in the right-chiral and left-chiral quark sectors.
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FIG. 1: The dependence of Br(B → τν) on the magnitude of the new physics couplings |cy∗
1x3| (thick black bands) and

|(a − b)y∗
1 | (thin purple/light grey bands). In each case, the different bands from left to right correspond to differing values

of the phase of the new physics coupling, namely, −π/2, 0, π/4 and π/2 respectively and the thickness of the individual band
reflects the errors in |Vub| and fB at the 1σ level. The experimental data on Br(B → τν) at 1σ (red/dark grey solid lines) and
2σ (blue/light grey broken lines) intervals are shown as horizontal bands.

IV. THE OBSERVABLES

A. Leptonic and semileptonic decay channels: B+ → τ+ν, Bc → τ+ν, B → D(D∗)τν

The relevant new operators are

OS ⊃ 1

Λ2
(a− b) [({y∗1u+ y∗2c}PRb) (τPLν) + h.c.] ,

OV ⊃ 1

Λ2
c x3 [({y∗1u+ y∗2c})PLb) (τPLν) + h.c.] , (46)

and their effect on the amplitudes of interest can be obtained by simple replacements in the corresponding SM
expressions, namely,

GF√
2
Vub → GF√

2
Vub +

1

4

c

Λ2
y∗1x3 for OV ,

GF√
2
Vubmτ → GF√

2
Vubmτ − 1

4

a− b

Λ2
y∗1

m2
B

mb +mu
for OS ,

(47)

where the latter follows from

〈0|u(1− γ5)b|B−〉 = −ifB
m2

B

mb +mu
. (48)

For the Bc decay, one has to make the following substitutions: {u, Vub, y1,mB,mu, fB} → {c, Vcb, y2,mBc
,mc, fBc

}.
Taking only one set of new physics couplings, cx3y

∗
1 or (a − b)y∗1 , to be non-zero, in Fig. 1 we show the variation

of Br(B → τν) with the magnitude of the coupling. We have set the scale of the new physics Λ = 1 TeV, and used
φ3 = γ = 77◦ [19]. Understandably, the phase of the NP coupling plays a significant role with positive values allowing
for destructive interference with the SM amplitude. This results in the different bands (one for each representative
value of the phase). The width of the bands is due to the uncertainty in Vub and to a lesser extent, that in fB. The
two horizontal bands correspond to 1σ (red/dark grey lines) and 2σ (blue/light grey lines) intervals of experimental
data on Br(B → τν). Their intersection with the NP bands determine the allowed ranges for the couplings. Note
that if |y1| is indeed O(|Vub|), then |cy∗1x3| > O(0.1) would indicate a significant departure from the expectations in
naive dimensional analysis.
For B → D(D∗)τν and Bc → τν, the SM effective Lagrangian is

Leff =
4GFVcb√

2
(cγµPLb) (τγµPLν) . (49)
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(dark grey) regions denote the 1σ, 2σ, and 3σ consistency bands respectively, where both theoretical and experimental errors
are taken into account and added in quadrature.

The two NP operators OS and OV modify this to

LNP =
4GFVcb√

2
[(1 + g′) (cγµPLb) (τγµPLν) + gR (cPRb) (τPLν)] , (50)

where the g′ (gR) term emanates from OV (OS), namely

4GFVcb√
2

g′ = Cy∗2x3 ,
4GFVcb√

2
gR = (A−B)y∗2 . (51)

If g′ 6= 0 but gR = 0, one can write

R(D) = RSM (D) |1 + g′|2 (52)

and a similar equation for R(D∗), assuming that the new interaction does not contribute to the electron or muon
channel. On the other hand, if gR 6= 0 but g′ = 0, we get

R(D) = RSM (D)
[

1 + 1.5Re(gR) + |gR|2
]

,

R(D∗) = RSM (D∗)
[

1 + 0.12Re(gR) + 0.05 |gR|2
]

. (53)

The same couplings also contribute to the leptonic decay Bc → τν, and depending on the phase of the coupling, can
increase or decrease the branching ratio.
In Figure 2, we show the allowed values of the coupling cy∗2x3, with Λ = 1 TeV, at different confidence levels. The

intervals are calculated with individual error margins and not with a combined χ2-fit. Corresponding to these three
cases, the branching ratio of Bc → τν are

Br(Bc → τν) ∈ [2.05− 2.40]% (1σ) , [1.80− 2.60]% (2σ) , [1.60− 2.80]% (3σ) , (54)

which should be compared with the SM value of 1.68%.
For the {S, P} couplings, there is no region in the parameter space compatible with both R(D) and R(D∗) at 1σ

or 2σ level. This is because of the small contribution of gR to R(D∗). Only at 3σ, does one get an allowed region in
the parameter space. However, Br(Bc → τν) can be quite large because of the chiral enhancement. If we assume, as
a conservative estimate, Br(Bc → τν) < 10%, this translates to

| (a− b)y∗2 |< 1.05 (55)

for Λ = 1 TeV. Note that the limits one obtains from neutral current mediated processes, like Bs–Bs mixing or
Bs → τ+τ− [11], are not valid in these cases as the couplings are different.
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B. Bs → τ+τ−

The term from OS that we would be interested in is

A
[

({x∗1d+ x∗2s+ x∗3b}PRb)(τPLτ) + (bPL{x1d+ x2s+ x3b})(τPRτ)
]

, (56)

and the relevant operator is

Ax∗2(sPRb)(τPLτ) =
1

2
Ax∗2 [(sPRb)(ττ)− (sPRb)(τγ5τ)] . (57)

This gives

Br(Bs → τ+τ−) =
G2

Fα
2m5

Bs
f2
Bs
τBs

256π3

√

1− 4m2
τ

m2
Bs

[(

1− 4m2
τ

m2
Bs

)

A+ B
]

(58)

where

A =

∣

∣

∣

∣

ζ

mb +ms

∣

∣

∣

∣

2

,

B =

∣

∣

∣

∣

ζ

mb +ms
+

2mτ

m2
Bs

[(VtbV
∗
ts)C10]

∣

∣

∣

∣

2

≈ A ,

ζ =
ax∗2
Λ2

√
2

8GF

4π

α
, (59)

where C10 is the Wilson coefficient for the corresponding SM operator, and is too small to be of any consequence. If
we take the upper limit of Br(Bs → τ+τ−) to be 3.5%, we get a bound, depending on definition used for mb. For
example,

|ax∗2| < 1.52 (1.34)

(

Λ

1 TeV

)2 (
Br(Bs → τ+τ−)

3.5%

)1/2

, (60)

for mb = mpole
b = 4.8 GeV (mb = mb(mb) = 4.2 GeV). This agrees with Ref. [11]. Thus, potentially, a can be large.

For the {V,A} couplings coming from OV , one has

Br(Bs → τ+τ−) =
f2
Bs
τBs

m2
τmBs

32π

√

1− 4m2
τ

m2
Bs

∣

∣

∣

∣

1

4

c

Λ2
x∗2x3

∣

∣

∣

∣

2

. (61)

Note that this is further suppressed by a factor of m2
τ/m

2
Bs

, which results in a weaker bound:

|cx∗2x3| < 6.0

(

Λ

1 TeV

)2 (
Br(Bs → τ+τ−)

3.5%

)1/2

. (62)

C. Width difference ∆Γs

Following Ref. [11], let us quote the relevant expressions for the width difference ∆Γs:

OS ⇒ Γs
12,NP = 3N x

√
1− 4x 〈QR

S 〉C2
S ,

OV ⇒ Γs
12,NP = N

[

{

1 + (1 − x)
√
1− 4x

}

〈QL
V 〉

+
{

1 + (1 + 2x)
√
1− 4x

}

〈QR
S 〉

]

C2
V ,

(63)
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FIG. 3: Typical one-loop corrections to Bs–Bs mixing originating from four-fermion operators.

where

x = m2
τ/m

2
Bs
,

N = − G2
Fm

2
b

6πmBs

(V ∗
tsVtb)

2 ,

〈QR
S 〉 = − 5

12
f2
Bs
m2

Bs
BS ,

〈QL
V 〉 =

2

3
f2
Bs
m2

Bs
BV ,

CS =

√
2

4GF

1

V ∗
tsVtb

ax∗2
2Λ2

,

CV =

√
2

4GF

1

V ∗
tsVtb

c

2Λ2
x∗2x3 . (64)

Note that the second equation of (63) has to be augmented by the inclusion of the ντ loop, which can be obtained from
the corresponding τ contribution by putting x = 0. For numerical evaluation, we use the lattice values fBs

= 0.231
GeV, BS = 1.3, BV = 0.84. From B → Kττ , there is a (scale-independent) bound, namely CV < 0.8, which translates
to

1

2
cx∗2x3 < 1.05

(

Λ

1 TeV

)2

. (65)

D. ∆Ms and the mixing phase φM

The aim of this subsection is to show how and why the constraints coming from ∆Ms measurements are so restrictive
in nature. Here, we will start from OV . There can be two sets of possible diagrams, one with the τ lepton (see Fig.3)
and the other with the neutrino. As the amplitudes are not chirality-suppressed, both the diagrams contribute equally.
The exact amplitudes cannot be calculated unless we know about the ultraviolet completion of the effective theory.
If we use a cut-off regularization, the leading term, which is divergent, should match with the leading term of the full
theory. The leading term of the loop amplitude is quadratically divergent, so we can safely neglect the subleading
terms.
The relevant part of the effective operator is

OV ⊃ 1

2
C(bγµPLb)(τγµPLτ) →

1

2
Cx∗2x3(sγ

µPLb)(τγµPLτ) . (66)

This gives rise to a mixing amplitude

iM12s =

(

1

2Λ2
cx∗2x3

)2

〈O1〉(iΓ2)× 16

=
i

π2
(cx∗2x3)

2
Λ−2〈O1〉

=
i

3π2
(cx∗2x3)

2
Λ−2ηBs

MBs
f2
Bs
BBs

, (67)

where we have used

Γ2 =
Λ2

4π2
, 〈O1〉 =

1

3
ηBs

MBs
f2
Bs
BBs

, (68)
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FIG. 4: The allowed magnitude and phase of the coupling cx∗
2x3 from the measurement of ∆Ms and 2βs, the effective mixing

phase from the box amplitude. The light (green) shaded area between the dashed (blue) curves is allowed by ∆Ms measurement,
whereas the area between the solid (purple) curves is allowed by the data on 2βs. Thus, only the two patches of dark (pink)
shaded area is finally allowed. For the left (right) plot, the experimental errors are taken at 1(2)σ level.

Γ2 being the leading term of the loop amplitude, and O1 = [sαγ
µ(1 − γ5)bα][sβγµ(1 − γ5)bβ ], α and β being colour

indices. The factor of 16 can be understood in the following way: there is another crossed box, which, in an effective
theory, is something like a t-channel amplitude. This gives a factor of 2. The initial meson can pick up a b from O1 in
two ways, and an s in two ways, so the symmetry factor is 4. The neutrino mediated amplitude gives another factor
of 2.
Comparing with iMSM

12s , we find

MNP

MSM
=

4(cx∗2x3)
2Λ−2

G2
Fm

2
W (VtbV ∗

ts)
2S0(xt)

, (69)

where xt = m2
t/m

2
W and S0(xt) is the relevant Inami-Lim function. The SM amplitude is GIM suppressed whereas

there is no such suppression for the NP amplitude, and thus Eq. (69) puts a fairly tight constraint on cx∗2x3. If we
want the latter to be large, the phase must be opposite to that of the SM amplitude, so that there is a destructive
interference: MNP ∼ −2MSM . Taking the errors on the ∆Ms prediction in the SM and the measurement of the
same quantity both at 2σ, we get

|cx∗2x3| < 0.048

(

Λ

1 TeV

)

. (70)

The allowed region is shown in Fig. 4. For Λ = 1 TeV, the limits on asfs are

− 6.3(−11.2)× 10−4 < asfs < 2.2(6.9)× 10−4 (71)

at 1(2)σ. Thus, by themselves, such operators are unable to explain the dimuon anomaly, and the explanation must
lie somewhere else. The maximum value of Br(Bs → τ+τ−) is about 3× 10−4%.
The situation is marginally better for a chiral coupling in the scalar sector; i.e., either S − P or S + P . For such

operators, the leading term in the Bs–Bs mixing amplitude is proportional to m2
τ log Λ

4, and there is no effective
constraint from ∆Ms and mixing phase. However, the major constraint comes from Br(Bs → τ+τ−), and also
partially from ∆Γs. We find

|asfs| < 6× 10−4 (72)

for Br(Bs → τ+τ−) < 4% and taking all the errors at 2σ level. Thus, none of these schemes are enough to explain
the dimuon anomaly completely.
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FIG. 5: Typical one-loop corrections to (left) the Hττ vertex and (right) τ self energy.

E. H → τ+τ−

Let us begin by parametrizing the tree-level Higgs-tau coupling by

L(H ττ)
tree = hτ τ τ H . (73)

As in any quantum theory, this interaction Lagrangian receives quantum corrections. We neglect here all the SM
corrections and concentrate solely on that wrought by the four-fermion operators. The scalar-pseudoscalar operators
give rise to an effective interaction of the form

b

2Λ2
Re(y3)

[

(tt)(ττ) − (tγ5t)(τγ5τ)
]

+
b

2Λ2
Im(y3)

[

(tt)(τγ5τ)− (tγ5t)(ττ)
]

. (74)

Each of these terms generates, at one-loop, a two-point diagram contributing to the effective Hττ coupling (see
Fig. 5). The said diagrams are manifestly quadratically divergent and need to be regularized. Given that our basic
theory is only an effective one, we may use a momentum cut-off regularization scheme, to yield the following correction
to the Lagrangian of Eq. (73):

δL1−loop =
3bht
8π2

Λ2
cutoff

Λ2
[Re(y3) ττ + Im(y3) τγ5τ ] H + · · · , (75)

where the ellipsis denote subleading terms. It is natural to consider Λcutoff = Λ, for the two are expected to be
similar. The appearance of a divergent correction to the pseudoscalar coupling (one that did not exist at the tree
level) might seem disconcerting at first. However, it should be realised that we are dealing with a nonrenormalizable
theory and the existence of such a divergence only reflects the fact that a large correction to Hττ is not prevented by
the symmetries of the theory extant on admitting the general four-fermion interaction. On inclusion of the ultraviolet
completion, such divergences would disappear identically. Clearly the two Lorentz structures contribute incoherently
to Γ(H → ττ). Formally though, the contribution of the scalar coupling correction may be larger as it can interfere
with the SM amplitude, and thus can enter at an earlier order in the perturbation theory. For simplicity, though, let
us assume that y3 is real. Then, we can parametrize the effective Hττ vertex, upto one-loop by

L(H ττ)
eff = hτ (1 + ξ) ττH + · · ·

ξ =
3bhty3
8π2hτ

.
(76)

Similarly, several other Yukawa couplings also receive corrections, but these are suppressed on account of the particular
structure of NP. For example, the bottom quark Yukawa coupling receives a correction on account of a tau-loop, and
this change can be expressed as hb → hb + bhτy3/8π

2.
It might be argued that our calculation of ξ is somewhat naive, and it is indeed true. However, an exact calculation

necessitates a knowledge of the ultraviolet completion of the theory, and, in a sense, goes against the spirit of an
effective theory. Nonetheless, ξ does encapsulate the leading correction, and in Fig. 6, we show the variation of the
branching fraction of H → τ+τ− as a function of the real variable ξ for mH = 125 GeV. From Fig. 6, it is very clear
that even a moderate value of ξ ∼ −0.3 is enough to give a 50% suppression in the BR(H → τ+τ−) . On the other
hand, from the observed upper limit of σH→ττ/σSM ≈ 1.1 from the LHC [1], we get an upper limit of ξ ≈ 0.05.
For the {V,A} current, once again, both scalar and pseudoscalar couplings appear at one-loop. However, the loop

is convergent as the current structure demands that extra powers of the fermion masses must be picked up. Hence,
the corresponding corrections are too small to be of any consequence.
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F. Anomalous top decays

One might ask whether the new couplings will lead to observable rates for FCNC top decays, e.g. t → cτ+τ−.
Unfortunately though, even if we use values of the couplings b y∗2 (for scalar operators) or c y∗2 (for vector operators)
significantly larger than what we need to explain the anomalies under investigation, the rates for this decay are still
much smaller than the LHC sensitivity limits. For example, we might naively use the limit on the branching ratio of
t→ cZ [31], namely

Br(t → cZ) < 0.24%, (77)

along with the measurement [30] of the decay width of the top

Γt = 2.00+0.47
−0.43 GeV (78)

to yield the very weak limit of Λ∼>0.5mt when the couplings are only restricted to be perturbative. Furthermore,
even the use of Eq.(77) is over-optimistic, for the CMS limits have been derived requiring that the Z-mass can be
reconstructed from its decay products. In the current case, this does not apply and the signal to noise ratio is lower
than that assumed to obtain Eq.(77). In other words, the actual limit is much weaker than that quoted above.

V. CONCLUSIONS

In this paper, we have investigated the possible implications of a scenario that involves some new interactions
involving the third generation fields. Any model that treats the third generation differently from the first two
generations may lead to such a scenario. Without attempting to prescribe an ultraviolet-complete theory, we rather
consider an effective theory valid below some cutoff scale Λ, above which the full theory takes over. A possible
motivation for such a scenario is the fact that there are excesses over the SM predictions for the charged current
B-decays, namely B → D(D∗)τν and B+ → τν, while the predictions for the processes involving the first two
generations of leptons do not show any tension with the data.
In the effective theory, there can be several four-fermion operators involving the third generation fields and several

possible choices for the Lorentz structures of the currents. With the Wilson coefficients for tensor operators being
severely constrained by the data on radiative decays, we preclude these from our discussions. With Λ being larger
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than the electroweak scale, it is quite likely that such four-fermion operators in the effective Lagrangian should be
written in the weak basis, and for reasons of economy, we consider only one such operator at a time. Rotating the
fields to the mass basis generates new operators involving first and second generation quark fields, albeit suppressed
by the corresponding entries of the quark mixing matrix.
Once we have a set of such operators, we study their implications on several B-decay observables. In particular,

we show that the apparent excesses in the B-decay channels mentioned above can be accommodated satisfactorily in
this scenario; complementary observables lead to nontrivial constraints on the model parameters. The vector-axial
vector operators successfully explain the excesses in both B → Dτν and B → D∗τν channels, apart from leading to a
sizable enhancement to the Bc → τν branching ratio as a testable prediction. The scalar-pseudoscalar couplings are
not that successful in explaining both the excesses, but there is a definite improvement over the SM predictions. The
excess in the channel B+ → τν can have a satisfactory explanation too, although the tension is no longer worrying.
The operators leading to Bd–Bd and Bs–Bs mixing are more constrained. They have identical Lorentz structures

as those discussed before, but with different quark fields and different Wilson coefficients. While these coefficients
are constrained from the measured mass differences ∆Md and ∆Ms, the restrictions are not strong enough to rule
out any observable enhancement in the Bs → τ+τ− channel, which should be investigated more carefully as one of
the best windows to new physics. Unfortunately though, the anomalously large dimuon asymmetry receives only a
marginal improvement over the SM prediction. One might need other operators to explain this, but it is not easy
given the tight constraints from ∆Ms measurements.
One thing that still remains unobservably small in this class of models is anomalous top decay, like t → cτ+τ−.

The other side of the coin is that if such decays are observed, the new physics must be something different from those
described here, as the expectations will be in conflict with the B-decay observables.
It is not yet certain whether there is a deficiency in the H → τ+τ− channel, but at the 1σ level, the cross-section

is slightly below the SM prediction. While it is too early to say anything about this channel, we would like to point
out that the interactions discussed in this paper can potentially modify the predictions for this channel, without
disturbing those for other channels. Further data from LHC will be eagerly anticipated.
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